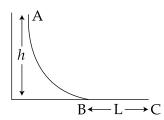
PART A - PHYSICS

- 1. In terms of resistance R and time T, the dimensions of ratio $\frac{\mu}{\epsilon}$ of the permeability μ and permittivity ϵ is :
 - (1) [RT⁻²]
 - (2) $[R^2 T^{-1}]$
 - (3) [R²]
 - (4) $[R^2 T^2]$
- 2. The initial speed of a bullet fired from a rifle is 630 m/s. The rifle is fired at the centre of a target 700 m away at the same level as the target. How far above the centre of the target the rifle must be aimed in order to hit the target?
 - (1) 1.0 m
 - (2) 4.2 m
 - (3) 6.1 m
 - (4) 9.8 m

भाग A - भौतिक विज्ञान

- प्रतिरोध R और समय T के पदों में, चुम्बकशीलता μ एवं विद्युतशीलता ϵ के अनुपात $\dfrac{\mu}{\epsilon}$ की विमा है :
- (1) $[RT^{-2}]$
- (2) $[R^2 T^{-1}]$
- (3) $[R^2]$
- (4) $[R^2 T^2]$
- .. एक राइफल से दागी गई बुलेट की प्रारम्भिक चाल 630 m/s है। लक्ष्य के स्तर पर लक्ष्य से 700 m दूर लक्ष्य के केन्द्र पर राइफल दागी जाती है। लक्ष्य को दागने के लिये राइफल का निशाना लक्ष्य के केन्द्र से कितना ऊपर लगाना चाहिए?
 - (1) 1.0 m
 - (2) 4.2 m
 - (3) 6.1 m
 - (4) 9.8 m

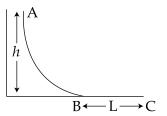

English: 1 Set: 11 Hindi: 1 Set: 11

- 3. A body of mass 5 kg under the action of constant force $\vec{F} = F_x \hat{i} + F_y \hat{j}$ has velocity at t = 0s as $\vec{v} = (6\hat{i} 2\hat{j})$ m/s and at t = 10 s as $\vec{v} = +6\hat{j}$ m/s. The force \vec{F} is:
 - (1) $\left(-3\hat{i}+4\hat{j}\right)$ N
 - $(2) \quad \left(-\frac{3}{5} \stackrel{\wedge}{i} + \frac{4}{5} \stackrel{\wedge}{j}\right) N$
 - (3) $\left(3\hat{i} 4\hat{j}\right) N$
 - $(4) \quad \left(\frac{3}{5} \stackrel{\wedge}{i} \frac{4}{5} \stackrel{\wedge}{j}\right) N$

- स्थिर बल $\vec{F}=F_x\hat{i}+F_y\hat{j}$ के कारण द्रव्यमान $5~kg~ah~vaa~a+cq~t=0s~vt~a\dot{r}$ $\vec{v}=\left(6\hat{i}-2\hat{j}\right)$ m/s से गतिशील है और t=10~s t=10~s t=10~s t=10~s t=10~s t=10~s t=10~s t=10~s t=10~s t=10~s
- (1) $\left(-3\hat{i}+4\hat{j}\right)$ N
- $(2) \quad \left(-\frac{3}{5} \stackrel{\wedge}{i} + \frac{4}{5} \stackrel{\wedge}{j}\right) N$
- (3) $\left(3\hat{i} 4\hat{j}\right) N$
- $(4) \quad \left(\frac{3}{5} \stackrel{\wedge}{i} \frac{4}{5} \stackrel{\wedge}{j}\right) N$

English: 2 Set: 11 Hindi: 2 Set: 11

4. A small ball of mass m starts at a point A with speed v_0 and moves along a frictionless track AB as shown. The track BC has coefficient of friction μ . The ball comes to stop at C after travelling a distance L which is:


$$(1) \quad \frac{2h}{\mu} + \frac{v_o^2}{2\mu g}$$

$$(2) \quad \frac{h}{\mu} + \frac{v_o^2}{2\mu g}$$

$$(3) \quad \frac{h}{2\mu} + \frac{v_o^2}{\mu g}$$

$$(4) \quad \frac{h}{2\mu} + \frac{v_0^2}{2\mu g}$$

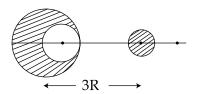
द्रव्यमान m की एक छोटी गेंद बिन्दु A से चाल v_o से प्रारम्भ करती है और एक घर्षणहीन पथ AB पर गितशील है जैसा कि चित्र में दर्शाया गया है। पथ BC का घर्षण गुणाँक μ है। गेंद C पर दूरी L चलने के पश्चात् रुक जाती है जहाँ L है:

$$(1) \quad \frac{2h}{\mu} + \frac{v_o^2}{2\mu g}$$

$$(2) \quad \frac{h}{\mu} + \frac{v_o^2}{2\mu g}$$

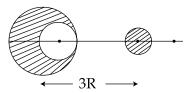
$$(3) \quad \frac{h}{2\mu} + \frac{v_o^2}{\mu g}$$

$$(4) \qquad \frac{h}{2\mu} + \frac{v_o^2}{2\mu g}$$


English: 3 Set: 11 Hindi: 3 Set: 11

- 5. The average mass of rain drops is 3.0×10^{-5} kg and their average terminal velocity is 9 m/s. Calculate the energy transferred by rain to each square metre of the surface at a place which receives 100 cm of rain in a year.
 - (1) $3.5 \times 10^5 \text{ J}$
 - (2) $4.05 \times 10^4 \text{ J}$
 - (3) $3.0 \times 10^5 \text{ J}$
 - (4) $9.0 \times 10^4 \text{ J}$
- 6. A thin bar of length L has a mass per unit length λ , that increases linearly with distance from one end. If its total mass is M and its mass per unit length at the lighter end is $\lambda_{o'}$, then the distance of the centre of mass from the lighter end is :
 - $(1) \quad \frac{L}{2} \frac{\lambda_o L^2}{4M}$
 - $(2) \quad \frac{L}{3} + \frac{\lambda_0 L^2}{8M}$
 - $(3) \quad \frac{L}{3} + \frac{\lambda_o L^2}{4M}$
 - $(4) \quad \frac{2L}{3} \frac{\lambda_0 L^2}{6M}$

- वर्षा की बूंदों का औसत द्रव्यमान $3.0 \times 10^{-5} \, \mathrm{kg}$ है और उनका औसत सीमान्त वेग 9 m/s है। जिस स्थान पर एक वर्ष में 100 cm वर्षा होती है उस स्थान के प्रति वर्ग मीटर पृष्ठ पर वर्षा द्वारा स्थानान्तरित ऊर्जा की गणना कीजिए।
 - (1) $3.5 \times 10^5 \text{ J}$
 - (2) $4.05 \times 10^4 \text{ J}$
 - (3) $3.0 \times 10^5 \text{ J}$
 - (4) $9.0 \times 10^4 \text{ J}$
- 6. लम्बाई L की एक पतली छड़ का प्रित इकाई लम्बाई द्रव्यमान λ है जो कि एक सिरे से दूरी के अनुसार रैखिकत: बढ़ता है। यदि इसका कुल द्रव्यमान M है और हल्के सिरे पर प्रित इकाई लम्बाई द्रव्यमान λ₀ है, तब हल्के सिरे से द्रव्यमान केन्द्र की दूरी है:
 - $(1) \quad \frac{L}{2} \frac{\lambda_o L^2}{4M}$
 - $(2) \quad \frac{L}{3} + \frac{\lambda_o L^2}{8M}$
 - $(3) \quad \frac{L}{3} + \frac{\lambda_0 L^2}{4M}$
 - $(4) \quad \frac{2L}{3} \frac{\lambda_o L^2}{6M}$


English: 4 Set: 11 Hindi: 4 Set: 11

7. From a sphere of mass M and radius R, a smaller sphere of radius $\frac{R}{2}$ is carved out such that the cavity made in the original sphere is between its centre and the periphery. (See figure). For the configuration in the figure where the distance between the centre of the original sphere and the removed sphere is 3R, the gravitational force between the two spheres is:

- $(1) \qquad \frac{41 \text{ GM}^2}{3600 \text{ R}^2}$
- (2) $\frac{41 \text{ GM}^2}{450 \text{ R}^2}$
- (3) $\frac{59 \text{ GM}^2}{450 \text{ R}^2}$
- (4) $\frac{\text{GM}^2}{225 \text{ R}^2}$

त्रिज्या R एवं द्रव्यमान M के एक गोले से, त्रिज्या R/2 का एक छोटा गोला इस प्रकार निकाल लिया जाता है कि मूल गोले में बनी गुहा इसके केन्द्र एवं परिधि के बीच है (चित्र देखें)। चित्र के विन्यास के अनुसार जब मूल गोले के केन्द्र और हटाये गये गोले के केन्द्र के बीच दूरी 3R है, तब दोनो गोलों के बीच गुरुत्वाकर्षण बल है:

- $(1) \quad \frac{41 \, \text{GM}^2}{3600 \, \text{R}^2}$
- (2) $\frac{41 \text{ GM}^2}{450 \text{ R}^2}$
- (3) $\frac{59 \text{ GM}^2}{450 \text{ R}^2}$
- (4) $\frac{\text{GM}^2}{225 \text{ R}^2}$

English: 5 Set: 11 Hindi: 5 Set: 11

- 8. The Bulk moduli of Ethanol, Mercury and water are given as 0.9, 25 and 2.2 respectively in units of 10^9 Nm⁻². For a given value of pressure, the fractional compression in volume is $\frac{\Delta V}{V}$. Which of the following statements about $\frac{\Delta V}{V}$ for these three liquids is correct?
 - (1) Ethanol > Water > Mercury
 - (2) Water > Ethanol > Mercury
 - (3) Mercury > Ethanol > Water
 - (4) Ethanol > Mercury > Water
- 9. A tank with a small hole at the bottom has been filled with water and kerosene (specific gravity 0.8). The height of water is 3 m and that of kerosene 2 m. When the hole is opened the velocity of fluid coming out from it is nearly: (take $g = 10 \text{ ms}^{-2}$ and density of water $= 10^3 \text{ kg m}^{-3}$)
 - (1) 10.7 ms^{-1}
 - (2) 9.6 ms^{-1}
 - (3) 8.5 ms^{-1}
 - (4) 7.6 ms⁻¹

- एथनॉल, पारा एवं पानी के आयतन प्रत्यास्थता गुणाँक $10^9~\mathrm{Nm}^{-2}$ की इकाई में क्रमशः 0.9, 25 एवं 2.2 दिये हुये हैं। दाब के दिये मान के लिए, आयतन में भिन्नात्मक संपीड़न $\frac{\Delta V}{V}$ है। इन तीन द्रवों के लिए $\frac{\Delta V}{V}$ के बारे में निम्नलिखित कथनों में से कौन सा सही है?
- (1) एथनॉल > पानी > पारा
- (2) पानी > एथनॉल > पारा
- (3) पारा > एथनॉल > पानी
- (4) एथनॉल > पारा > पानी
- 9. तली में एक छोटे छिद्र वाले टैंक को पानी एवं मिट्टी के तेल (आपेक्षित घनत्व 0.8) से भरा गया है। पानी की ऊँचाई $3 \, \mathrm{m}$ है और मिट्टी के तेल की $2 \, \mathrm{m}$ । जब छिद्र को खोल दिया जाता है, तब निकलने वाले द्रव की चाल लगभग होगी : $(g=10 \, \mathrm{ms}^{-2}$ ले और पानी का घनत्व $=10^3 \, \mathrm{kg \ m}^{-3}$)
 - (1) 10.7 ms^{-1}
 - (2) 9.6 ms^{-1}
 - (3) 8.5 ms^{-1}
 - (4) 7.6 ms⁻¹

English: 6 Set: 11 Hindi: 6 Set: 11

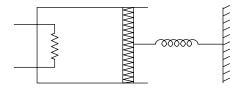
- 10. An air bubble of radius 0.1 cm is in a liquid having surface tension 0.06 N/m and density 10^3 kg/m 3 . The pressure inside the bubble is 1100 Nm $^{-2}$ greater than the atmospheric pressure. At what depth is the bubble below the surface of the liquid ? (g=9.8 ms $^{-2}$)
 - (1) 0.1 m
 - (2) 0.15 m
 - (3) 0.20 m
 - (4) 0.25 m
- 11. A hot body, obeying Newton's law of cooling is cooling down from its peak value 80°C to an ambient temperature of 30°C. It takes 5 minutes in cooling down from 80°C to 40°C. How much time will it take to cool down from 62°C to 32°C?

(Given $ln\ 2=0.693$, $ln\ 5=1.609$)

- (1) 3.75 minutes
- (2) 8.6 minutes
- (3) 9.6 minutes
- (4) 6.5 minutes

- 10. पृष्ठ तनाव $0.06~\mathrm{N/m}$ और घनत्व $10^3~\mathrm{kg/m^3}$ वाले एक द्रव में त्रिज्या $0.1~\mathrm{cm}$ का एक वायु का बुलबुला है। बुलबुले के अन्दर दाब वायुमंडलीय दाब से $1100~\mathrm{Nm^{-2}}$ अधिक है। द्रव के पृष्ठ से किस गहराई पर बुलबुला है? $(g=9.8~\mathrm{ms^{-2}})$
 - (1) 0.1 m
 - (2) 0.15 m
 - (3) 0.20 m
 - (4) 0.25 m
- 11. न्यूटन के शीतलन नियम का पालन करती हुई एक गर्म वस्तु अपने शीर्ष तापमान 80°C से परिवेश तापमान 30°C तक ठंडी होती है। यह 80°C से 40°C तक ठंडा होने में 5 मिनट लेती है। यह 62°C से 32°C तक ठंडा होने में कितना समय लेगी?

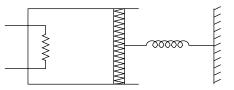
(दिया है $ln\ 2=0.693$, $ln\ 5=1.609$)


- (1) 3.75 मिनट
- (2) 8.6 मिनट
- (3) 9.6 मिनट
- (4) 6.5 मिनट

English: 7 Set: 11 Hindi: 7 Set: 11

	During an adiabatic compression, 830 J of work is done on 2 moles of a diatomic ideal gas to reduce its volume by 50%. The change in its temperature is nearly: (R=8.3 JK ⁻¹ mol ⁻¹) (1) 40 K (2) 33 K (3) 20 K (4) 14 K	एक रुद्धोष्म संपीड़न के दौरान, एक द्विपरमाणुक आदश्य मैस के 2 मोल का आयतन 50% कम किये जाने र 830 J का कार्य करना पड़ता है। इसके तापमान र परिवर्तन है लगभग : (R=8.3 JK ⁻¹ mol ⁻¹) (1) 40 K (2) 33 K (3) 20 K (4) 14 K	में	
Eng	glish: 8 Set: 11	Hindi: 8 Set: 1	1	

13. An ideal monoatomic gas is confined in a cylinder by a spring loaded piston of cross section 8.0×10^{-3} m². Initially the gas is at 300K and occupies a volume of 2.4×10^{-3} m³ and the spring is in its relaxed state as shown in figure. The gas is heated by a small heater until the piston moves out slowly by 0.1 m. The force constant of the spring is 8000 N/m and the atmospheric pressure is $1.0 \times 10^5 \text{ N/m}^2$. The cylinder and the piston are thermally insulated. The piston and the spring are massless and there is no friction between the piston and the cylinder. The final temperature of the gas will be:


(Neglect the heat loss through the lead wires of the heater. The heat capacity of the heater coil is also negligible)

- (1) 300 K
- (2) 800 K
- (3) 500 K
- (4) 1000 K

एक बेलन में अनुप्रस्थ काट $8.0 \times 10^{-3} \, \mathrm{m}^2$ के एक कमानीदार भारित पिस्टन द्वारा एक आदर्श एकपरमाणुक गैस को रखा गया है। प्रारम्भ में गैस $300 \, \mathrm{K}$ पर है और $2.4 \times 10^{-3} \, \mathrm{m}^3$ आयतन रखती हैं और कमानी अपनी विश्रांति अवस्था में है जैसा कि चित्र में दर्शाया गया है। गैस को एक छोटे हीटर द्वारा तब तक गरम किया जाता है जब तक कि पिस्टन धीरे से $0.1 \, \mathrm{m}$ की गित न कर ले। कमानी का बल नियताँक $8000 \, \mathrm{N/m}$ है और वायुमंडलीय दाब $1.0 \times 10^5 \, \mathrm{N/m}^2$ है। बेलन एवं पिस्टन ऊष्मारोधी हैं। पिस्टन एवं कमानी द्रव्यमानविहीन है और पिस्टन एवं बेलन के बीच कोई घर्षण नहीं है। गैस का अन्तिम तापमान होगा:

(हीटर के लीड तारों से ऊर्जा की हानि नगण्य माने और हीटर कुण्डली की ऊष्माधारिता भी नगण्य है) :

- (1) 300 K
- (2) 800 K
- (3) 500 K
- (4) 1000 K

English: 9 Set: 11 Hindi: 9 Set: 11

14. The angular frequency of the damped oscillator is given by,

$$\omega = \sqrt{\left(\frac{k}{m} - \frac{r^2}{4m^2}\right)}$$
 where k is the spring

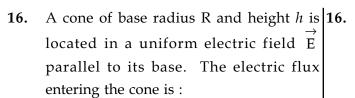
constant, m is the mass of the oscillator and

r is the damping constant. If the ratio

 $\frac{r^2}{mk}$ is 8%, the change in time period compared to the undamped oscillator is approximately as follows :

- (1) increases by 1%
- (2) increases by 8%
- (3) decreases by 1%
- (4) decreases by 8%
- at 800 Hz. A man goes from one factory to other at a speed of 2 m/s. The velocity of sound is 320 m/s. The number of beats heard by the person in one second will be:
 - (1) 2
 - (2) 4
 - (3) 8
 - (4) 10

14. एक अवमन्दित दोलक की कोणीय आवृत्ति इससे दी जाती है,

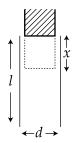

$$\omega = \sqrt{\left(rac{k}{m} - rac{r^2}{4m^2}
ight)}$$
जहाँ k कमानी स्थिराँक है,

m दोलक का द्रव्यमान है और r अवमन्दन स्थिराँक है।

यदि अनुपात $\frac{r^2}{mk} = 8\%$ है, तब अनवमन्दित दोलक के मुकाबले आवर्त काल में परिवर्तन लगभग होगा :

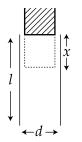
- (1) 1% से वृद्धि होगी
- (2) 8%से वृद्धि होगी
- (3) 1%से घटेगा
- (4) 8%से घटेगा
- 15. दो फैक्टरियाँ अपने सायरन 800 Hz पर ध्वनित करती हैं। एक व्यक्ति 2 m/s की चाल से एक फैक्टरी से दूसरी फैक्टरी तक जाता है। ध्वनि का वेग 320 m/s है। एक सेकंड में व्यक्ति द्वारा सुनी गई विस्पन्दों की संख्या है:
 - (1) 2
 - (2) 4
 - (3) 8
 - (4) 10

English: 10 Set: 11 Hindi: 10 Set: 11

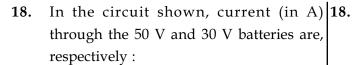

- $(1) \quad \frac{1}{2} \to h R$
- (2) E h R
- (3) 2 E h R
- (4) 4 E h R

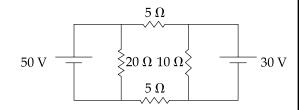
- 6. आधार त्रिज्या R एवं ऊँचाई h वाला एक शंकु आधार के समान्तर एकसमान विद्युत क्षेत्र E में स्थित है। शंकु में प्रवेश करने वाला विद्युत फ्लक्स है:
 - $(1) \quad \frac{1}{2} \to h R$
 - (2) E *h* R
 - (3) 2 E h R
 - (4) 4 E h R

English: 11 Set: 11 Hindi: 11 Set: 11


17. A parallel plate capacitor is made of two plates of length *l*, width *w* and separated by distance *d*. A dielectric slab (dielectric constant K) that fits exactly between the plates is held near the edge of the plates. It is pulled into the capacitor by a force

 $F = -\frac{\partial U}{\partial x}$ where U is the energy of the capacitor when dielectric is inside the capacitor up to distance x (See figure). If the charge on the capacitor is Q then the force on the dielectric when it is near the edge is :

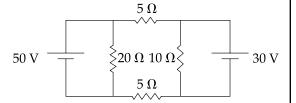

- $(1) \qquad \frac{Q^2 d}{2wl^2 \epsilon_0} \ \mathbf{F}$
- $(2) \quad \frac{Q^2 w}{2dl^2 \epsilon_0} \quad (K-1)$
- (3) $\frac{Q^2 d}{2wl^2 \epsilon_0} (K-1)$
- $(4) \quad \frac{Q^2 w}{2dl^2 \epsilon_0} \text{ K}$


एक समान्तर प्लेट संधारित्र दो प्लेटों से बना है जिनकी लम्बाई l, चौडाई w हैं और एक दुसरे से d दूरी पर है। एक परावैद्युत पट्टी (परावैद्युतांक K) जो कि प्लेटों के बीच ठीक से समा जाती है, को प्लेटों की सिरे के पास पकड़ कर रखा हुआ है। इसे संधारित्र के अन्दर बल $F = -\frac{\partial U}{\partial x}$ द्वारा खींचा जाता है जहाँ U संधारित्र की तब ऊर्जा है जब परावैद्युत संधारित्र के अन्दर x दूरी पर है। (चित्र देखें)। यदि संधारित्र पर आवेश Q है, तब परावैद्युत पर बल, जब वह सिरे के पास है, होगा:

- $(1) \quad \frac{Q^2 d}{2wl^2 \epsilon_0} K$
- $(2) \quad \frac{Q^2 w}{2dl^2 \epsilon_0} \quad (K-1)$
- $(3) \quad \frac{Q^2 d}{2wl^2 \epsilon_0} \quad (K-1)$
- $(4) \quad \frac{Q^2 w}{2dl^2 \epsilon_0} \text{ K}$

English: 12 Set: 11 Hindi: 12 Set: 11

- (1) 2.5 and 3
- (2) 3.5 and 2
- (3) 4.5 and 1
- (4) 3 and 2.5
- 19. Three straight parallel current carrying conductors are shown in the figure. The force experienced by the middle conductor of length 25 cm is:


$$I_1 = 30 \text{ A}$$
 $I_2 = 20 \text{ A}$

$$3 \text{ cm} \qquad 5 \text{ cm}$$

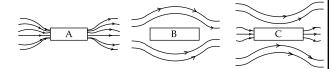
$$I = 10 \text{ A}$$

- (1) 3×10^{-4} N toward right
- (2) 6×10^{-4} N toward left
- (3) 9×10^{-4} N toward left
- (4) Zero

18. दर्शाये गये परिपथ में, 50 V एवं 30 V बैटरियों में धारा (A में) क्रमशः हैं:

- (1) 2.5 एवं 3
- (2) 3.5 एवं 2
- (3) 4.5 एवं 1
- (4) 3 एवं 2.5
- 19. तीन सीधे समान्तर धारा प्रवाहित चालक चित्र में दर्शाये गये हैं। लम्बाई 25 cm के बीच वाले चालक द्वारा अनुभव किया गया बल है:

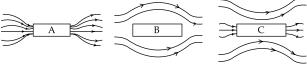
$$I_1 = 30 \text{ A}$$
 $I_2 = 20 \text{ A}$


$$3 \text{ cm} \qquad 5 \text{ cm}$$

$$I = 10 \text{ A}$$

- (1) $3 \times 10^{-4} \,\text{N}$ दाँयी ओर
- (2) $6 \times 10^{-4} \,\text{N}$ बाँयी ओर
- (3) $9 \times 10^{-4} \,\mathrm{N}$ बॉंयी ओर
- (4) शून्य

English: 13 Set: 11 Hindi: 13 Set: 11


20. Three identical bars A, B and C are made of different magnetic materials. When kept in a uniform magnetic field, the field lines around them look as follows:

Make the correspondence of these bars with their material being diamagnetic (D), ferromagnetic (F) and paramagnetic (P):

- (1) $A \leftrightarrow D$, $B \leftrightarrow P$, $C \leftrightarrow F$
- (2) $A \leftrightarrow F$, $B \leftrightarrow D$, $C \leftrightarrow P$
- (3) $A \leftrightarrow P, B \leftrightarrow F, C \leftrightarrow D$
- (4) $A \leftrightarrow F$, $B \leftrightarrow P$, $C \leftrightarrow D$
- 21. A coil of circular cross-section having 1000 turns and 4 cm² face area is placed with its axis parallel to a magnetic field which decreases by 10⁻² Wb m⁻² in 0.01 s. The e.m.f. induced in the coil is:
 - (1) 400 mV
 - (2) 200 mV
 - (3) 4 mV
 - (4) 0.4 mV

20. तीन सर्वसमरूपी छड़े A, B एवं C तीन विभिन्न चुम्बकीय पदार्थों से बनी हैं। जब इन्हें एक एकसमान चुम्बकीय क्षेत्र में रखा जाता है, तब इन पर क्षेत्र रेखाएँ निम्न प्रकार से दिखती हैं:

इन छड़ों के पदार्थों को प्रतिचुम्बकीय (D), लोह चुम्बकीय (F) एवं अनुचुम्बकीय (P) आधार पर संगत करें :

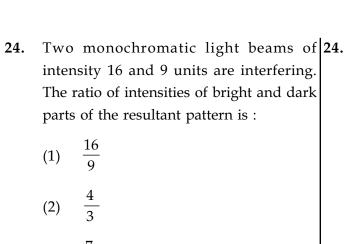
- (1) $A \leftrightarrow D$, $B \leftrightarrow P$, $C \leftrightarrow F$
- (2) $A \leftrightarrow F$, $B \leftrightarrow D$, $C \leftrightarrow P$
- $(3) \quad A \leftrightarrow P, B \leftrightarrow F, C \leftrightarrow D$
- $(4) \quad A \leftrightarrow F, B \leftrightarrow P, C \leftrightarrow D$
- 21. 1000 फेरे एवं 4 cm² फलक क्षेत्रफल वाली एक वृत्तीय अनुप्रस्थ काट की कुंडली को इसके अक्ष के समान्तर एक चुम्बकीय क्षेत्र में रखा गया है जो कि 10⁻² Wb m⁻² 0.01 s में घट जाता है। कुंण्डली में प्रेरित विद्युत वाहक बल है:
 - (1) 400 mV
 - (2) 200 mV
 - (3) 4 mV
 - (4) 0.4 mV

22.	An electromagnetic wave of frequency
	1×10^{14} hertz is propagating along z - axis.
	The amplitude of electric field is 4 V/m. If
	$\epsilon_0 = 8.8 \times 10^{-12} \text{ C}^2/\text{N} \cdot \text{m}^2$, then average
	energy density of electric field will
	be:

- (1) $35.2 \times 10^{-10} \text{ J/m}^3$
- (2) $35.2 \times 10^{-11} \text{ J/m}^3$
- (3) $35.2 \times 10^{-12} \text{ J/m}^3$
- (4) $35.2 \times 10^{-13} \text{ J/m}^3$

23. An object is located in a fixed position in front of a screen. Sharp image is obtained on the screen for two positions of a thin lens separated by 10 cm. The size of the images in two situations are in the ratio 3 : 2. What is the distance between the screen and the object?

- (1) 124.5 cm
- (2) 144.5 cm
- (3) 65.0 cm
- (4) 99.0 cm


22. आवृत्ति 1×10^{14} हर्टज की एक विद्युत चुम्बकीय तरंग z - अक्ष पर संचरण कर रही है। विद्युत क्षेत्र का आयाम 4 V/m है। यदि $\epsilon_{o} = 8.8 \times 10^{-12} \text{ C}^{2}/\text{N-m}^{2}$, तब विद्युत क्षेत्र का औसत ऊर्जा घनत्व होगा :

- (1) $35.2 \times 10^{-10} \text{ J/m}^3$
- (2) $35.2 \times 10^{-11} \text{ J/m}^3$
- (3) $35.2 \times 10^{-12} \text{ J/m}^3$
- (4) $35.2 \times 10^{-13} \text{ J/m}^3$

23. एक पर्दे के सामने एक स्थिर स्थिति में एक वस्तु स्थित है। एक पतले लेन्स की 10 cm दूरी पर दो स्थितियों से पर्दे पर स्पष्ट प्रतिबिम्ब बनते हैं। दोनों स्थितियों में प्रतिबिम्बों के आकार का अनुपात 3:2 है। वस्तु एवं पर्दे के बीच दूरी क्या है?

- (1) 124.5 cm
- (2) 144.5 cm
- (3) 65.0 cm
- (4) 99.0 cm

English: 15 Set: 11 Hindi: 15 Set: 11

- (3) $\frac{7}{1}$
- $(4) \frac{49}{1}$
- 25. In a compound microscope the focal length of objective lens is 1.2 cm and focal length of eye piece is 3.0 cm. When object is kept at 1.25 cm in front of objective, final image is formed at infinity. Magnifying power of the compound microscope should be:
 - (1) 200
 - (2) 100
 - (3) 400
 - (4) 150

- 24. तीव्रता 16 एवं 9 इकाई वाली दो एकवर्णी प्रकाश पुंजों के बीच व्यतिकरण हो रहा है। परिणामी चित्र के उजले और काले हिस्सों की तीव्रताओं का अनुपात होगा:
 - (1) $\frac{16}{9}$
 - (2) $\frac{4}{3}$
 - (3) $\frac{7}{1}$
 - (4) $\frac{49}{1}$
- 25. एक संयुक्त सूक्ष्मदर्शी में अभिदृश्यक लेन्स की फोकस लम्बाई 1.2 cm और नेत्रिका की फोकस लम्बाई 3.0 cm हैं। जब वस्तु को अभिदृश्यक के सामने 1.25 cm की दूरी पर रखा जाता है, तब अन्तिम प्रतिबिम्ब अनन्त पर बनता है। संयुक्त सूक्ष्मदर्शी की आवर्धन शक्ति होनी चाहिए:
 - (1) 200
 - (2) 100
 - (3) 400
 - (4) 150

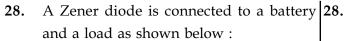
English: 16 Set: 11 Hindi: 16 Set: 11

26.	A photon of wavelength λ is scattered
	from an electron, which was at rest. The
	wavelength shift $\Delta\lambda$ is three times of λ and
	the angle of scattering θ is 60° . The angle
	at which the electron recoiled is ϕ . The
	value of tan $\boldsymbol{\varphi}$ is : (electron speed is much
	smaller than the speed of light)

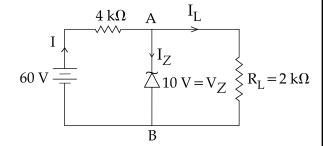
- (1) 0.16
- (2) 0.22
- (3) 0.25
- (4) 0.28

27. A radioactive nuclei with decay constant 0.5/s is being produced at a constant rate of 100 nuclei/s. If at t=0 there were no nuclei, the time when there are 50 nuclei is:

- (1) 1 s
- (2) $2 ln \left(\frac{4}{3}\right) s$
- (3) ln 2 s
- (4) $ln\left(\frac{4}{3}\right)$ s

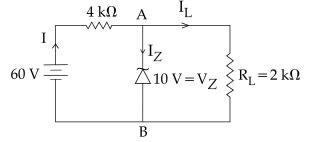

26. विश्राम अवस्था के एक इलेक्ट्रान से तरंगदैर्घ्य λ का एक फोटान प्रकीर्णित होता है। तरंगदैर्घ्य स्थानान्तर Δλ तरंगदैर्घ्य λ का तीन गुना है और प्रकीर्णन कोण $\theta = 60^\circ$ है। इलेक्ट्रान φ कोण पर प्रतिक्षिप्त होता है। $\tan \phi$ का मान है: (इलेक्ट्रान की चाल प्रकाश की चाल से काफी कम है)

- (1) 0.16
- (2) 0.22
- (3) 0.25
- (4) 0.28


27. 100 नाभिक प्रति सैिकण्ड की स्थिर दर से क्षयस्थिराँक 0.5/s वाले रेडियोसक्रिय नाभिक उत्पन्न हो रहे हैं। यदि t=0 पर एक भी नामिक उपस्थित नहीं था, तब 50 नाभिक उत्पन्न होने में लगा समय है:

- (1) 1 s
- (2) $2 ln \left(\frac{4}{3}\right) s$
- (3) ln 2 s
- (4) $ln\left(\frac{4}{3}\right)s$

English: 17 Set: 11 Hindi: 17 Set: 11



The currents I, I_Z and I_L are respectively

- (1) 15 mA, 5 mA, 10 mA
- (2) 15 mA, 7.5 mA, 7.5 mA
- (3) 12.5 mA, 5 mA, 7.5 mA
- (4) 12.5 mA, 7.5 mA, 5 mA

28. एक जेनर डायोड को एक बैटरी एवं एक लोड से जोड़ा गया है जैसा कि परिपथ में दर्शाया गया है। धारायें I, I_Z एवं I_L क्रमशः हैं :

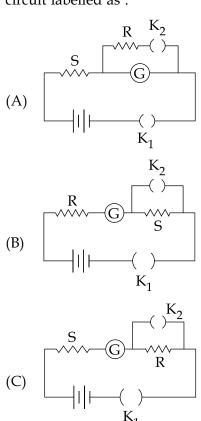
- (1) 15 mA, 5 mA, 10 mA
- (2) 15 mA, 7.5 mA, 7.5 mA
- (3) 12.5 mA, 5 mA, 7.5 mA
- 4) 12.5 mA, 7.5 mA, 5 mA

English: 18 Set: 11 Hindi: 18 Set: 11

29. Match the List - I (Phenomenon associated with electromagnetic radiation) with List - II (Part of electromagnetic spectrum) and select the correct code from the choices given below the lists:

	List - I		List - II
Ι	Doublet of sodium	A	Visible radiation
II	Wavelength corresponding to temperature associated with the isotropic radiation filling all space	В	Microwave
III	Wavelength emitted by atomic hydrogen in interstellar space	С	Short radiowave
IV	Wavelength of radiation arising from two close energy levels in hydrogen	D	X - rays

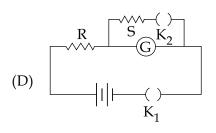
- (1) (I)-(A), (II)-(B), (III)-(B), (IV)-(C)
- (2) (I)-(A), (II)-(B), (III)-(C), (IV)-(C)
- (3) (I)-(D), (II)-(C), (III)-(A), (IV)-(B)
- (4) (I)-(B), (II)-(A), (III)-(D), (IV)-(A)

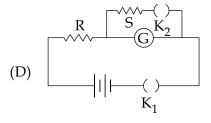

29. सूची-I (विद्युत चुम्बकीय विकिरण से सम्बद्ध घटनाएँ) को सूची-II (विद्युत चुम्बकीय स्पेक्ट्रम का भाग) से सुमेलित कीजिए और सूचियों के नीचे दिये गये विकल्पों में से सही विकल्प चुनिए :

	सूची - I		सूची - II
Ι	सोडियम का द्विक	A	दृश्य विकिरण
II	सम्पूर्ण समष्टि में समदैशिक विकिरण के भरे होने से सम्बद्धित तापमान के संगत तरंगदैर्ध्य	В	सूक्ष्म तरंग
III	अन्तरतारकीय आकाश में परमाणु हाइड्रोजन द्वारा उत्सर्जित तरंगदैर्ध्य	С	लघु रेडियो तरंगे
IV	हाइड्रोजन में दो समीप ऊर्जा स्तरों से निकले विकिरण की तरंगदैर्ध्य	D	X - किरणें

- (1) (I)-(A), (II)-(B), (III)-(B), (IV)-(C)
- (2) (I)-(A), (II)-(B), (III)-(C), (IV)-(C)
- (3) (I)-(D), (II)-(C), (III)-(A), (IV)-(B)
- (4) (I)-(B), (II)-(A), (III)-(D), (IV)-(A)

English: 19 Set: 11 Hindi: 19 Set: 11


30. In the circuit diagrams (A, B, C and D) 30. shown below, R is a high resistance and S is a resistance of the order of galvanometer resistance G. The correct circuit, corresponding to the half deflection method for finding the resistance and figure of merit of the galvanometer, is the circuit labelled as:


उच्च प्रित्रिथ चित्रों (A, B, C एवं D) में, R एक अन्य उच्च प्रतिरोध है और S गैल्वैनोमापी प्रतिरोध G की कोटि का प्रतिरोध है। गैल्वैनोमापी का प्रतिरोध एवं दक्षतांक निकालने के अर्द्ध-विक्षेपण विधि के संगत सही परिपथ चिन्हित है इससे :

(A)
$$\begin{bmatrix} R & K_2 \\ \hline & & \\ \hline & & \\ \hline & & \\ \hline & & \\ K_1 & \end{bmatrix}$$

English: 20 Set: 11 Hindi: 20 Set: 11

- (1) Circuit A with $G = \frac{RS}{(R S)}$
- (2) Circuit B with G=S
- (3) Circuit C with G=S
- (4) Circuit D with $G = \frac{RS}{R S}$

- (1) $G = \frac{RS}{(R S)}$ के साथ परिपथ A
- (2) G=S के साथ परिपथ B
- (3) G=S के साथ परिपथ C
- (4) $G = \frac{RS}{R S}$ के साथ परिपथ D

English : 21 Set : 11 Hindi : 21 Set : 11

PART B - CHEMISTRY

31. If λ_0 and λ be the threshold wavelength and wavelength of incident light, the velocity of photoelectron ejected from the metal surface is :

(1)
$$\sqrt{\frac{2h}{m}(\lambda_0 - \lambda)}$$

(2)
$$\sqrt{\frac{2hc}{m}(\lambda_o - \lambda)}$$

(3)
$$\sqrt{\frac{2hc}{m} \left(\frac{\lambda_{o} - \lambda}{\lambda \lambda_{o}}\right)}$$

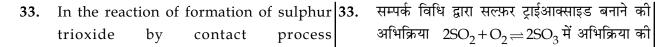
(4)
$$\sqrt{\frac{2h}{m}\left(\frac{1}{\lambda_0}-\frac{1}{\lambda}\right)}$$

- 32. The appearance of colour in solid alkali metal halides is generally due to:
 - (1) Schottky defect
 - (2) Frenkel defect
 - (3) Interstitial position
 - (4) F-centres

भाग B - रसायन विज्ञान

31. यदि λ_0 और λ दहलीज़ी तरंगदैर्घ्य और आपितत प्रकाश का तरंग दैर्घ्य हों तो धातु स्थल से निकले प्रकाशीय इलेक्ट्रानों का वेग होगा :

$$(1) \quad \sqrt{\frac{2h}{m} \left(\lambda_{o} - \lambda\right)}$$


(2)
$$\sqrt{\frac{2hc}{m}(\lambda_o - \lambda)}$$

(3)
$$\sqrt{\frac{2hc}{m}\left(\frac{\lambda_{o}-\lambda}{\lambda\lambda_{o}}\right)}$$

(4)
$$\sqrt{\frac{2h}{m}\left(\frac{1}{\lambda_0} - \frac{1}{\lambda}\right)}$$

- 32. ठोस क्षार धातु हेलाइडों में रंग के देखे जाने का कारण प्राय: होता है:
 - (1) शॉटकी दोष
 - (2) फ्रैंकल दोष
 - (3) अन्तराली स्थान
 - (4) F-केन्द्र

English: 22 Set: 11 Hindi: 22 Set: 11

 $2SO_2 + O_2 \rightleftharpoons 2SO_3$ the rate of reaction was measured as

$$\frac{d[O_2]}{dt} = -2.5 \times 10^{-4} \text{mol L}^{-1} \text{ s}^{-1}.$$
 The rate of reaction in terms of [SO₂] in mol

 -1.25×10^{-4}

 $L^{-1}s^{-1}$ will be:

 -2.50×10^{-4}

 -3.75×10^{-4}

 -5.00×10^{-4}

- **34.** Assuming that the degree of hydrolysis is **34.** small, the pH of 0.1 M solution of sodium acetate ($K_a=1.0\times10^{-5}$) will be :
 - (1) 5.0
 - 6.0
 - 8.0
 - 9.0 (4)

अभिक्रिया $2SO_2 + O_2 \rightleftharpoons 2SO_3$ में अभिक्रिया की

दर को $\frac{d[O_2]}{dt} = -2.5 \times 10^{-4}$ मोल L⁻¹ s⁻¹

के रूप में मापा गया। अभिक्रिया दर [SO₂]के रूप में

मोल
$$L^{-1}s^{-1}$$
 में होगी :

- -1.25×10^{-4}
- -2.50×10^{-4}
- -3.75×10^{-4}
- -5.00×10^{-4}
- यह मानते हुए कि हाइड्रोलेसिस का क्रमांक (डिग्री) न्यून है, सोडियम ऐसीटेट के 0.1M विलयन $(K_a=1.0\times10^{-5})$ का pH होगा :
 - (1) 5.0
 - 6.0
 - 8.0 (3)
 - 9.0 (4)

35. For the reaction,
$$2N_2O_5 \rightarrow 4NO_2 + O_2$$
, the rate equation can be expressed in two

ways
$$-\frac{d[N_2O_5]}{dt} = k[N_2O_5]$$
 and

$$+ \frac{d[NO_2]}{dt} = k' [N_2O_5]$$

k and k' are related as:

- (1) k = k'
- (2) 2k = k'
- $(3) \quad k = 2k'$
- $(4) \quad k = 4k'$
- 36. In some solutions, the concentration of H_3O^+ remains constant even when small amounts of strong acid or strong base are added to them. These solutions are known as :
 - (1) Ideal solutions
 - (2) Colloidal solutions
 - (3) True solutions
 - (4) Buffer solutions

35. अभिक्रिया $2N_2O_5 \rightarrow 4NO_2 + O_2$, के लिए दर समीकरण को दो तरीके से लिखा जा सकता है

$$+ \frac{d[NO_2]}{dt} = k'[N_2O_5]$$

k और k' को निम्न किस रूप में लिखा जायेगा?

- (1) k = k'
- (2) 2k = k'
- $(3) \quad k = 2k'$
- $(4) \quad k = 4k'$
- 36. कुछ विलयनों में प्रबल ऐसिड अथवा प्रबल क्षार की थोड़ी मात्रा मिलाने पर भी H_3O^+ का सान्द्रण स्थिर ही रहता है। इन विलयनों को नाम दिया जाता है:
 - (1) आदर्श विलयन
 - (2) कोलायडी विलयन
 - (3) वास्तविक विलयन
 - (4) बफर (Buffer) विलयन

English: 24 Set: 11 Hindi: 24 Set: 11

Fe³⁺(aq) + e⁻
$$\rightarrow$$
 Fe²⁺(aq); E°= +0.77 V
A1³⁺(aq) + 3 e⁻ \rightarrow A1(s); E°= -1.66 V
Br₂(aq) + 2 e⁻ \rightarrow 2B r⁻; E°= +1.09 V

Considering the electrode potentials, which of the following represents the correct order of reducing power?

- (1) $Fe^{2+} < Al < Br^-$
- (2) $Br^{-} < Fe^{2+} < Al$
- (3) $Al < Br^- < Fe^{2+}$
- (4) $Al < Fe^{2+} < Br^{-}$
- 38. The initial volume of a gas cylinder is 750.0 mL. If the pressure of gas inside the cylinder changes from 840.0 mm Hg to 360.0 mm Hg, the final volume the gas will be:
 - (1) 1.750 L
 - (2) 3.60 L
 - (3) 4.032 L
 - (4) 7.50 L

37. दिया गया है -

 Fe^{3+} (जलीय) $+ e^{-} \rightarrow Fe^{2+}$ (जलीय); $E^{\circ} = +0.77 \, \mathrm{V}$ Al^{3+} (जलीय) $+ 3e^{-} \rightarrow Al(s)$; $E^{\circ} = -1.66 \, \mathrm{V}$ Br_{2} (जलीय) $+ 2e^{-} \rightarrow 2B \, r^{-}$; $E^{\circ} = +1.09 \, \mathrm{V}$ इलैक्ट्रोड विभवों के आधार पर निम्नों में से कौन क्रम अपचयन शक्तियों को सही प्रस्तुत करता है ?

- (1) $Fe^{2+} < Al < Br^-$
- (2) $Br^{-} < Fe^{2+} < Al$
- (3) $Al < Br^- < Fe^{2+}$
- (4) $Al < Fe^{2+} < Br^{-}$
- 38. एक गैस के सिलिन्डर का प्रारम्भिक आयतन 750.0 mL है। यदि सिलिन्डर के बीच की गैस का दाब 840.0 mm Hg से बदल कर 360.0 mm Hg हो जाता है तो गैस का अन्तिम आयतन होगा :
 - (1) 1.750 L
 - (2) 3.60 L
 - (3) 4.032 L
 - (4) 7.50 L

English: 25 Set: 11 Hindi: 25 Set: 11

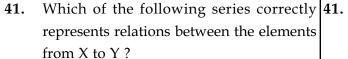
- 39. The molar heat capacity (C_p) of CD₂O is 10 cals at 1000 K. The change in entropy associated with cooling of 32 g of CD₂O vapour from 1000 K to 100 K at constant pressure will be:
 - (D = deuterium, at. mass = 2 u)
 - (1) $23.03 \text{ cal deg}^{-1}$
 - (2) -23.03 cal deg⁻¹
 - (3) $2.303 \text{ cal deg}^{-1}$
 - (4) -2.303 cal deg⁻¹
- **40.** Based on the equation :

$$\Delta E = -2.0 \times 10^{-18} J \left(\frac{1}{n_2^2} - \frac{1}{n_1^2} \right)$$

the wavelength of the light that must be absorbed to excite hydrogen electron from level n=1 to level n=2 will be : $(h = 6.625 \times 10^{-34} \text{ Js}, \text{ C} = 3 \times 10^8 \text{ ms}^{-1})$

- (1) 1.325×10^{-7} m
- (2) 1.325×10^{-10} m
- (3) 2.650×10^{-7} m
- (4) 5.300×10^{-10} m

- **39.** CD_2O की मोलर ऊष्मा धारिता (C_p) 1000 K पर 10 calsहै। 32 g CD_2O वाष्प को 1000 K से 100 K तक स्थिर दाब पर ठण्डा करने पर सम्बद्ध ऐन्ट्रापी परिवर्तन होगा :
 - (D = डियुटीरियम, और इसका परमाणु द्रव्यमान = 2 मात्रक)
 - (1) $23.03 \text{ cal deg}^{-1}$
 - (2) -23.03 cal deg⁻¹
 - (3) $2.303 \text{ cal deg}^{-1}$
 - (4) -2.303 cal deg⁻¹
- 40. समीकरण :


$$\Delta E = -2.0 \times 10^{-18} \text{ J} \left(\frac{1}{n_2^2} - \frac{1}{n_1^2} \right)$$

के आधार पर हाइड्रोजन के इलैक्ट्रान को स्तर n=1 से स्तर n=2 तक उत्तेजित करने के लिये प्रकाश, जिस का शोषण आवश्यक होगा, का तरंग दैर्घ्य इनमें से क्या होगा:

$$(h = 6.625 \times 10^{-34} \text{ Js, C} = 3 \times 10^8 \text{ ms}^{-1})$$

- (1) 1.325×10^{-7} m
- (2) 1.325×10^{-10} m
- (3) $2.650 \times 10^{-7} \text{ m}$
- (4) 5.300×10^{-10} m

English: 26 Set: 11 Hindi: 26 Set: 11

$$X \, \rightarrow \, Y$$

- (1) $_3\text{Li} \rightarrow_{19}\text{K}$ Ionization enthalpy increases
- (2) ${}_{9}F \rightarrow {}_{35}Br$ Electron gain enthalpy with negative sign increases
- (3) ${}_{6}C \rightarrow {}_{32}Ge$ Atomic radii increases
- (4) $_{18}\text{Ar} \rightarrow _{54}\text{Xe Noble character increases}$
- **42.** The correct order of bond dissociation energy among N_2 , O_2 , O_2^- is shown in which of the following arrangements?
 - (1) $N_2 > O_2^- > O_2$
 - (2) $O_2^- > O_2 > N_2$
 - (3) $N_2 > O_2 > O_2^-$
 - (4) $O_2 > O_2^- > N_2$

41. निम्न से कौन सा सीरीज़ दो तत्वों X और Y के बीच के सम्बन्ध का सही निरूपन करता है?

$$X \rightarrow Y$$

- (1) $_3{
 m Li}
 ightarrow _{19}{
 m K}$ आयनीकरण की ऐन्थैल्पी बढ़ती है
- $(2) \quad _{9} ext{F} \, o _{35} ext{Br} \,$ इलैक्ट्रान लाभ की ऐन्थैल्पी $\frac{1}{2}$ ऋणात्मक चिन्ह के साथ बढ़ती $\frac{1}{2}$
- (3) ${}_{6}\mathrm{C}
 ightarrow {}_{32}\mathrm{Ge}$ परमाणुओं की त्रिज्याएँ बढ़ती हैं
- (4) $_{18}{
 m Ar}
 ightarrow _{54}{
 m Xe}$ उत्क्रष्ट स्वभाव बढ़ता है
- 12. निम्न व्यवस्थाओं में से किस में N_2 , O_2 , O_2^- की आबन्ध वियोजन ऊर्जा के सही क्रम को दिखाया गया है ?
 - (1) $N_2 > O_2^- > O_2$
 - $(2) O_2^- > O_2 > N_2$
 - (3) $N_2 > O_2 > O_2^-$
 - (4) $O_2 > O_2^- > N_2$

English: 27 Set: 11 Hindi: 27 Set: 11

- **43.** Which of the following statements about Na₂O₂ is **not** correct ?
 - (1) It is diamagnetic in nature.
 - (2) It is a derivative of H_2O_2 .
 - (3) Na_2O_2 oxidises Cr^{3+} to CrO_4^{2-} in acid medium.
 - (4) It is the super oxide of sodium.
- **44.** Which of the following statements about the depletion of ozone layer is correct?
 - (1) The problem of ozone depletion is less serious at poles because NO₂ solidifies and is not available for consuming ClO[•] radicals.
 - (2) The problem of ozone depletion is more serious at poles because ice crystals in the clouds over poles act as catalyst for photochemical reactions involving the decomposition of ozone by Cl* and ClO* radicals.
 - (3) Freons, chlorofluorocarbons, are inert chemically, they do not react with ozone in stratosphere.
 - (4) Oxides of nitrogen also do not react with ozone in stratosphere.

- **43.** Na_2O_2 के सम्बन्ध में निम्न कथनों से कौन सा कथन सही **नहीं** है ?
 - (1) इस की प्रवृत्ति प्रतिचुम्बकीय है।
 - (2) यह H_2O_2 का एक व्युत्पन्न है
 - (3) आम्ल माध्यम में Na_2O_2 से Cr^{3+} का CrO_4^{2-} में उपचयन हो जाता है।
 - (4) यह सोडियम का परा-आक्साइड है।
- 44. ओजोन स्तर के घटने सम्बन्धी निम्न कथनों में से कौन सा सही है?
 - (1) ध्रुवी क्षेत्रों में ओज़ोन घटने की समस्या कम महत्व रखती है क्योंकि NO₂ जमकर ठोस बन जाती है और CIO[•] मूलकों को हटाने के लिये उपलब्ध नहीं होती।
 - (2) ध्रुवी क्षेत्रों में ओज़ोन के घटने की समस्या अधिक महत्व रखती है क्योंिक ध्रुवों पर बादलों में बर्फ के क्रिस्टलों के होने से Cl* और ClO* रेडिकलों द्वारा उत्प्रेरित ओज़ोन वियोजन की प्रकाश-रासायनिक अभिक्रियाएँ हो सकती है।
 - (3) फ्रिआनें (क्लोरोफ्लोरो कार्बन) रासायनिक रूप में अक्रिय होती हैं। वे ऊपरी वायुमण्डल में उपस्थित ओजोन से क्रिया नहीं करतीं।
 - (4) ऊपरी वायुमण्डल की ओज़ोन से नाइट्रोजन के आक्साइड भी क्रिया नहीं करते।

English: 28 Set: 11 Hindi: 28 Set: 11

- 45. A gaseous compound of nitrogen and hydrogen contains 12.5% (by mass) of hydrogen. The density of the compound relative to hydrogen is 16. The molecular formula of the compound is:
 - (1) NH₂
 - (2) N_3H
 - (3) NH₃
 - (4) N_2H_4
- **46.** Shapes of certain interhalogen compounds are stated below. Which one of them is **not** correctly stated?
 - (1) IF₇: pentagonal bipyramid
 - (2) BrF₅: trigonal bipyramid
 - (3) BrF₃: planar T-shaped
 - (4) ICl₃: planar dimeric
- **47.** Consider the following equilibrium

$$AgCl \downarrow + 2NH_3 \rightleftharpoons \left[Ag(NH_3)_2\right]^+ + Cl^-$$

White precipitate of AgCl appears on adding which of the following?

- (1) NH₃
- (2) aqueous NaCl
- (3) aqueous HNO₃
- (4) aqueous NH₄Cl

- 45. नाइट्रोजन और हाइड्रोजन का एक गैसीय यौगिक द्रव्यमान से 12.5% हाइड्रोजन रखता है। हाइड्रोजन की तुलना में इस यौगिक का घनत्व 16 है। यौगिक का अणुसूत्र होगा:
 - (1) NH₂
 - (2) N_3H
 - (3) NH₃
 - $(4) N_2H_4$
- 46. कुछ अंत:हैलोजन यौगिकों के आकार नीचे लिखे गए हैं। इनमें से कौन सा कथन सही नहीं है?
 - (1) IF₇: पंचभुजीय द्विपिरामिड
 - (2) BrF_5 : त्रिकोणीय द्विपिरामिड
 - (3) BrF₃ : समतलीय T-आकार का
 - (4) ICl₃: समतलीय डाइमेरिक (दो व्यवस्थित)
- **47.** इस साम्य

$$AgCl \downarrow + 2NH_3 \rightleftharpoons \left[Ag(NH_3)_2\right]^+ + Cl^-$$

को ध्यान दीजिए। निम्नों में से किसे डालने पर AgCl का श्वेत अवक्षेप बनेगा?

- (1) NH₃
- (2) जलीय NaCl
- (3) जलीय HNO₃
- (4) जलीय NH₄Cl

48.	Which of the following name formula
	combinations is not correct?

	Formula	Name
(1)	$K_2[Pt(CN)_4]$	Potassium tetracyanoplatinate (II)
(2)	$[Mn(CN)_5]^{2-}$	Pentacyanomagnate (II) ion
(3)	K[Cr(NH ₃) ₂ Cl ₄]	Potassium diammine tetrachlorochromate (III)
(4)	[Co(NH ₃) ₄ (H ₂ O)I]SO ₄	Tetraammine aquaiodo cobalt (III) sulphate

- **49.** Consider the coordination compound, [Co(NH₃)₆]Cl₃. In the formation of this complex, the species which acts as the Lewis acid is:
 - (1) $[Co(NH_3)_6]^{3+}$
 - (2) Cl⁻
 - (3) Co^{3+}
 - (4) NH₃
- 50. Which one of the following does **not** have a pyramidal shape?
 - (1) $(CH_3)_3 N$
 - (2) $(SiH_3)_3 N$
 - (3) $P(CH_3)_3$
 - $(4) \quad P(SiH_3)_3$

48. निम्न नाम-सूत्र	जोड़ो में से	कौन सह	ही नहीं है?
---------------------	--------------	--------	--------------------

	सूत्र	नाम
(1)	$K_2[Pt(CN)_4]$	पोटाशियम टैट्रासायनो प्लैटीनेट (II)
(2)	[Mn(CN)5]2-	पैन्टासायनो मैंगानेट(II) आयन
(2)	K[Cr(NH ₃) ₂ Cl ₄]	पोटैशियम
(3)	K[C1(1V113)2C14]	डाईएमीनटैट्राक्लोरोक्रोमेट (III)
(4)	[Co(NH ₃) ₄ (H ₂ O)I]SO ₄	टैट्रा ऐमीनोएक्वाआयोडोकोबाल्ट
(4)	[CO(1 VI 13/4(1 12O)1]SO4	(III) सल्फ़ेट

- **49.** समन्वयी यौगिक $[Co(NH_3)_6]Cl_3$ को ध्यान दीजिए। इस संकर के बनाने में प्रयुक्त पदार्थ जो ल्युइस ऐसिड (Lewis acid) है, होगा :
 - (1) $[Co(NH_3)_6]^{3+}$
 - (2) C1⁻
 - (3) Co^{3+}
 - (4) NH₃
- **50.** निम्नों में से किस का रूप पिरामिडीय **नहीं** है?
 - (1) $(CH_3)_3 N$
 - (2) $(SiH_3)_3 N$
 - (3) $P(CH_3)_3$
 - $(4) \quad P(SiH_3)_3$

English: 30 Set: 11 Hindi: 30 Set: 11

51. The following reaction

$$OH \longrightarrow +HCl+HCN \xrightarrow{Anhyd.} OH \longrightarrow CHO$$

is known as:

- (1) Perkin reaction
- (2) Gattermann-Koch Formylation
- (3) Kolbe's reaction
- (4) Gattermann reaction

52. The reagent needed for converting **52.**

$$Ph-C \equiv C-Ph \longrightarrow Ph C=C Ph$$

is:

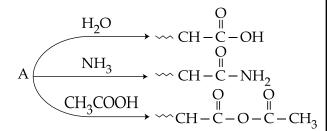
- (1) Cat. Hydrogenation
- (2) H_2 /Lindlar Cat.
- (3) Li/NH₃
- (4) LiAlH₄
- 53. Complete reduction of benzene-diazonium chloride with Zn/HCl gives:
 - (1) Aniline
 - (2) Phenylhydrazine
 - (3) Azobenzene
 - (4) Hydrazobenzene

51. अभिक्रिया

$$OH \longrightarrow +HCl+HCN \xrightarrow{Anhyd.} OH \longrightarrow CHC$$

को इनमें से किस नाम से जाना जाता है?

- (1) परिकन अभिक्रिया
- (2) गैटरमन कॉच फ़रमीलेशन
- (3) कोलबे की अभिक्रिया
- (4) गैटरमन अभिक्रिया


52. परिवर्तन

$$Ph-C \equiv C-Ph \longrightarrow Ph \\ H \subset C=C \\ Ph$$

के लिये आवश्यक अभिकारक है:

- (1) कैट. हाइड्रोजिनेशन
- (2) H₂/लिंडलर कैट.
- (3) Li/NH_3
- (4) LiAlH₄
- Zn/HCl के द्वारा बैन्जीन डायाजोनियम क्लोराइड का पूरा अपचयन देता है:
 - (1) ऐनीलीन
 - (2) फ़िनाइलहाइड्राज़ीन
 - (3) ऐज़ोबैन्जीन
 - (4) हाइड्रऐज़ोबैन्जीन

54. An organic compound A, C₅H₈O; reacts 54. with H₂O, NH₃ and CH₃COOH as described below:

A is:

(1)
$$CH_3 CH = C - CHO$$

 CH_3

(2)
$$CH_2 = CH CH - C HO$$

 CH_3

(3)
$$CH_3 - CH_2 - C = C = O$$

 CH_3

(4)
$$CH_3 - CH_2 - C - C = O$$

 $CH_2 H$

- 55. In allene (C_3H_4) , the type(s) of hybridization of the carbon atoms is (are):
 - (1) sp and sp^3
 - (2) sp^2 and sp
 - (3) only sp^2
 - (4) sp^2 and sp^3

54. एक आरगैनिक यौगिक A, C_5H_8O ; निम्न प्रकार H_2O , NH_3 और CH_3COOH के साथ क्रिया करता है

A है :

(1)
$$CH_3 CH = C - CHO$$

 CH_3

(2)
$$CH_2 = CH CH - C HO$$

 CH_3

(3)
$$CH_3 - CH_2 - C = C = O$$

 CH_3

(4)
$$CH_3 - CH_2 - C - C = O$$

 $CH_2 H$

55. C_3H_4 (एलीन) में कार्बन परमाणु (परमाणुओं) के संकरण की विधि होती है :

Set : 11

- (1) sp और sp³
- (2) sp² और sp
- (3) केवल sp²
- (4) sp² और sp³

English: 32 Set: 11 Hindi: 32

$$2 \bigcirc Cl + H - C - CCl_3 \xrightarrow{H_2SO_4}$$

The major product formed is:

$$(1) \quad Cl \longrightarrow - \begin{matrix} Cl \\ - \\ Cl \end{matrix} - Cl$$

(2)
$$Cl - Cl - Cl - CH_2Cl$$

(3)
$$Cl \longrightarrow CH \longrightarrow CCl_3$$

$$(4) \qquad Cl \longrightarrow -CH - \bigcirc -Cl$$

57. Tischenko reaction is a modification of : 57.

- (1) Aldol condensation
- (2) Claisen condensation
- (3) Cannizzaro reaction
- (4) Pinacol-pinacolon reaction

6. H₂SO₄ की उपस्थिति में क्लोरोबैन्ज़ीन की ट्राइक्लोरोऐसिट ऐल्डिहाइड से अभिक्रिया

में बनने वाली प्रमुख यौगिक है:

$$(1) \quad Cl \longrightarrow - \begin{matrix} Cl \\ - \\ Cl \end{matrix} \longrightarrow - Cl$$

(2)
$$Cl \longrightarrow Cl$$
 Cl_2Cl

$$(3) \quad \text{Cl} \longrightarrow \begin{array}{c} -\text{CH} - \\ \text{CCl}_3 \end{array} \longrightarrow \begin{array}{c} -\text{Cl} \\ \end{array}$$

$$(4) \qquad Cl \longrightarrow -CH - \bigcirc -Cl$$

57. टिसचैन्को अभिक्रिया एक बदला हुआ रूप है :

- (1) ऐल्डोल संघनन का
- (2) क्लेज़न संघनन का
- (3) कैनीज़ारो अभिक्रिया का
- (4) पिनाकोल पिनाकोलोन अभिक्रिया का

English: 33 Set: 11 Hindi: 33 Set: 11

		ch one of the following is used as histamine? Omeprazole Chloranphenicol Diphenhydramine		e) क्लोरेन फ़ैनिकोल
	(4)	Norethindrone	(.) नारएथिनड्रोन
		ch one of the following statements is correct?	59. f	म्न कथनों में से कौन सा सही नहीं है?
	(1)	Alcohols are weaker acids than water	() ऐल्कोहालें पानी की तुलना में दुर्बल अम्ल हैं
	(2)	Acid strength of alcohols decreases in the following order	(ऐल्कोहालों की अम्ल शिक्त इस क्रम में घटर्त जाती है -
		$RCH_2OH > R_2CHOH > R_3COH$		$RCH_2OH > R_2CHOH > R_3COH$
	(3)	Carbon-oxygen bond length in methanol, CH ₃ OH is shorter than that of C – O bond length in phenol.	() मैथेनाल, CH ₃ OH में कार्बन - आक्सीजन आबन्ध की लम्बाई फ़िनाल में C – O आबन्ध की लम्बाई से छोटी होती है।
	(4)	The bond angle C H in methanol is 108.9°	(e) मेथेनाल में C H आबन्ध कोण 108.99 होता है।
		gas liberated by the electrolysis of 60 tassium succinate solution is :		इपोटैशियम सक्सीनेट के विलयन के वैद्युत विभाजन प्राप्त गैस होती है :
	(1)	Ethane	() ईथेन
	(2)	Ethyne	(
	(3)	Ethene	(
	(4)	Propene	(.) प्रोपीन
Eng	lish	: 34 Set : 11	Hind	Set: 11

PART C - MATHEMATICS

61. Let *f* be an odd function defined on the set of real numbers such that for $x \ge 0$,

$$f(x) = 3 \sin x + 4 \cos x.$$

Then f(x) at $x = -\frac{11\pi}{6}$ is equal to:

(1)
$$\frac{3}{2} + 2\sqrt{3}$$

(2)
$$-\frac{3}{2} + 2\sqrt{3}$$

(3)
$$\frac{3}{2} - 2\sqrt{3}$$

(4)
$$-\frac{3}{2} - 2\sqrt{3}$$

62. If z_1 , z_2 and z_3 , z_4 are 2 pairs of complex conjugate numbers, then

$$\arg\left(\frac{z_1}{z_4}\right) + \arg\left(\frac{z_2}{z_3}\right)$$
 equals :

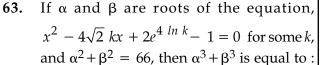
- (1)
- (2) $\frac{\pi}{2}$
- (3) $\frac{3\pi}{2}$
- (4) π

भाग C - गणित

1. माना f एक विषम फलन है जो कि वास्तविक संख्याओं के समुच्चय पर $f(x) = 3 \sin x + 4 \cos x$ द्वारा परिभाषित है जहाँ $x \ge 0$ है, तो $x = -\frac{11\pi}{6}$ पर f(x) बराबर है :

(1)
$$\frac{3}{2} + 2\sqrt{3}$$

(2)
$$-\frac{3}{2} + 2\sqrt{3}$$


(3)
$$\frac{3}{2} - 2\sqrt{3}$$

(4)
$$-\frac{3}{2} - 2\sqrt{3}$$

62. यदि z_1 , z_2 तथा z_3 , z_4 सम्मिश्र संयुग्मी संख्याओं के दो युग्म हैं, तो-

$$\arg\left(\frac{z_1}{z_4}\right) + \arg\left(\frac{z_2}{z_3}\right)$$
 बराबर है :

- (1)
- $(2) \qquad \frac{\pi}{2}$
- $(3) \quad \frac{3\pi}{2}$
- (4) π

- (1) $248\sqrt{2}$
- $280\sqrt{2}$
- $-32\sqrt{2}$
- $(4) -280\sqrt{2}$
- **64.** Let A be a 3×3 matrix such that

$$A \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Then A^{-1} is :

$$(1) \quad \begin{bmatrix} 3 & 1 & 2 \\ 3 & 0 & 2 \\ 1 & 0 & 1 \end{bmatrix}$$

$$(3) \quad \begin{bmatrix} 0 & 1 & 3 \\ 0 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix}$$

$$(4) \qquad \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 2 & 3 \end{bmatrix}$$

63. If α and β are roots of the equation,
$$x^2 - 4\sqrt{2} kx + 2e^{4 \ln k} - 1 = 0$$
 for some k , and $\alpha^2 + \beta^2 = 66$, then $\alpha^3 + \beta^3$ is equal to:
$$\alpha^2 + \beta^2 = 66$$
, then $\alpha^3 + \beta^3$ is equal to:
$$\alpha^2 + \beta^2 = 66$$
, then $\alpha^3 + \beta^3$ is equal to:
$$\alpha^2 + \beta^2 = 66$$
, then $\alpha^3 + \beta^3$ is equal to:

- (1) $248\sqrt{2}$
- $280\sqrt{2}$
- $-32\sqrt{2}$
- $(4) -280\sqrt{2}$
- माना A एक ऐसा 3×3 आव्यूह है कि

$$A \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \stackrel{\triangleright}{\xi}, \vec{\eta}$$

 A^{-1} है:

$$(1) \quad \begin{bmatrix} 3 & 1 & 2 \\ 3 & 0 & 2 \\ 1 & 0 & 1 \end{bmatrix}$$

$$(2) \quad \begin{bmatrix} 3 & 2 & 1 \\ 3 & 2 & 0 \\ 1 & 1 & 0 \end{bmatrix}$$

$$(3) \quad \begin{bmatrix} 0 & 1 & 3 \\ 0 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix}$$

$$(4) \quad \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 2 & 3 \end{bmatrix}$$

English: 36

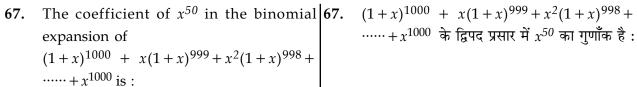
Set: 11 Hindi: 36

65. Let for
$$i = 1, 2, 3$$
, $p_i(x)$ be a polynomial of degree 2 in x , $p_i'(x)$ and $p_i''(x)$ be the first and second order derivatives of $p_i(x)$ respectively. Let,

$$A(x) = \begin{bmatrix} p_1(x) & p_1'(x) & p_1''(x) \\ p_2(x) & p_2'(x) & p_2''(x) \\ p_3(x) & p_3'(x) & p_3''(x) \end{bmatrix}$$

and $B(x) = [A(x)]^T A(x)$. Then determinant of B(x):

- (1) is a polynomial of degree 6 in x.
- (2) is a polynomial of degree 3 in x.
- (3) is a polynomial of degree 2 in x.
- (4) does not depend on x.
- 66. An eight digit number divisible by 9 is to be formed using digits from 0 to 9 without repeating the digits. The number of ways in which this can be done is:
 - (1) 72 (7!)
 - (2) 18 (7!)
 - (3) 40 (7!)
 - (4) 36 (7!)


55. माना i = 1, 2, 3,के लिए $p_i(x)$, x में घात 2 के बहुपद हैं, $p_i'(x)$ तथा $p_i''(x)$ क्रमशः प्रथम कोटि तथा द्वितीय कोटि के अवकलज हैं। माना

$$A(x) = \begin{bmatrix} p_1(x) & p_1'(x) & p_1''(x) \\ p_2(x) & p_2'(x) & p_2''(x) \\ p_3(x) & p_3'(x) & p_3''(x) \end{bmatrix}$$

तथा $B(x) = [A(x)]^T A(x)$ है, तो B(x) का सारणिक :

- (1) x में घात 6 का एक बहुपद है।
- (2) x में घात 3 का एक बहुपद है।
- (3) x में घात 2 का एक बहुपद है।
- (4) x पर निर्भर नहीं करता।
- 66. 0 से 9 तक के अंकों के प्रयोग से, अंकों को दोहराए बिना, एक 9 से भाज्य, आठ अंकों की संख्या बनानी है। यह जितने तरीकों से किया जा सकता है, वे हैं:
 - (1) 72 (7!)
 - (2) 18 (7!)
 - (3) 40 (7!)
 - (4) 36 (7!)

English: 37 Set: 11 Hindi: 37 Set: 11

$$(1) \qquad \frac{(1000)!}{(50)!(950)!}$$

(2)
$$\frac{(1000)!}{(49)!(951)!}$$

(3)
$$\frac{(1001)!}{(51)!(950)!}$$

$$(4) \qquad \frac{(1001)!}{(50)!(951)!}$$

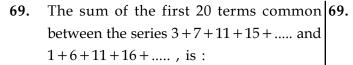
In a geometric progression, if the ratio of 68. the sum of first 5 terms to the sum of their reciprocals is 49, and the sum of the first and the third term is 35. Then the first term of this geometric progression is:

- (1) 7
- 21
- 28
- (4) 42

67.
$$(1+x)^{1000} + x(1+x)^{999} + x^2(1+x)^{998} + \dots + x^{1000}$$
 के द्विपद प्रसार में x^{50} का गुणाँक है :

(1)
$$\frac{(1000)!}{(50)!(950)!}$$

(2)
$$\frac{(1000)!}{(49)!(951)!}$$


(3)
$$\frac{(1001)!}{(51)!(950)!}$$

$$(4) \qquad \frac{(1001)!}{(50)!(951)!}$$

एक गुणोत्तर श्रेढ़ी में यदि पहले 5 पदों के योग का उनके व्युत्क्रमों के योग से अनुपात 49 है तथा इसके पहले तथा तीसरे पदों का योग 35 है, तो इस गुणोत्तर श्रेढ़ी का प्रथम पद है:

- (1)
- 21
- (3) 28
- (4) 42

English: 38 Hindi: 38 Set : 11 Set : 11

- (1) 4000
- (2) 4020
- (3) 4200
- (4) 4220

$$\lim_{x \to 2} \frac{\tan(x-2)\{x^2 + (k-2)x - 2k\}}{x^2 - 4x + 4} = 5$$

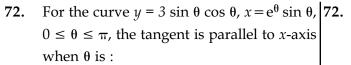
then k is equal to :

- (1) 0
- (2) 1
- (3) 2
- (4) 3

71. Let
$$f(x) = x|x|$$
, $g(x) = \sin x$ and $h(x) = (g \circ f)(x)$. Then

- (1) h(x) is not differentiable at x = 0.
- (2) h(x) is differentiable at x = 0, but h'(x) is not continuous at x = 0.
- (3) h'(x) is continuous at x = 0 but it is not differentiable at x = 0.
- (4) h'(x) is differentiable at x = 0.

- (1) 4000
- (2) 4020
- (3) 4200
- (4) 4220


$$\lim_{x \to 2} \frac{\tan(x-2)\{x^2 + (k-2)x - 2k\}}{x^2 - 4x + 4} = 5$$

है, तो k बराबर है :

- 1) 0
- (2)
- (3) 2
- (4) 3

71. माना
$$f(x) = x|x|$$
, $g(x) = \sin x$ तथा $h(x) = (gof)(x)$ है, तो

- (1) h(x), x=0 पर अवकलनीय नहीं है।
- (2) h(x), x = 0 पर अवकलनीय है परन्तु h'(x), x = 0 पर सतत नहीं है।
- (3) h'(x), x = 0 पर सतत है, परन्तु यह x = 0 पर अवकलनीय नहीं है।
- (4) h'(x), x = 0 पर अवकलनीय है।

- (1) $3\pi/4$
- (2) $\frac{\pi}{2}$
- (3) $\frac{\pi}{4}$
- (4) $\frac{\pi}{6}$
- 73. Two ships A and B are sailing straight away from a fixed point O along routes such that ∠AOB is always 120°. At a certain instance, OA = 8 km, OB = 6 km and the ship A is sailing at the rate of 20 km/hr while the ship B sailing at the rate of 30 km/hr. Then the distance between A and B is changing at the rate (in km/hr):
 - (1) $260/\sqrt{37}$
 - (2) 260/37
 - (3) $80/\sqrt{37}$
 - (4) 80/37

- 72. वक्र $y = 3 \sin \theta \cos \theta$, $x = e^{\theta} \sin \theta$, $0 \le \theta \le \pi$, के लिए स्पर्शरेखा x- अक्ष के समांतर है, जब θ बराबर है :
 - (1) $3\pi/4$
 - (2) $\frac{\pi}{2}$
 - (3) $\frac{\pi}{4}$
 - $(4) \quad \frac{\pi}{6}$
- 73. दो जहाज़ A तथा B, एक निश्चित बिंदु O से दूर सीधे मार्गों पर इस प्रकार जा रहे हैं कि $\angle AOB$ सदा 120° रहता है। किसी क्षण, OA = 8 किमी तथा OB = 6 किमी है तथा जहाज़ A, 20 किमी/घंटा की चाल से चल रहा है जबिक जहाज़ B, 30 किमी/घंटा की चाल से चल रहा है, तो A तथा B के बीच की दूरी जिस दर (किमी/घंटा में) से बदल रही है, वह है:
 - (1) $260/\sqrt{37}$
 - (2) 260/37
 - (3) $80/\sqrt{37}$
 - (4) 80/37

English: 40 Set: 11 Hindi: 40 Set: 11

74.	The volume of the largest possible right
	circular cylinder that can be inscribed in a
	sphere of radius = $\sqrt{3}$ is :

$$(1) \qquad \frac{4}{3}\sqrt{3} \ \pi$$

(2)
$$\frac{8}{3}\sqrt{3} \tau$$

75. The integral
$$\int x \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) dx$$
 $(x > 0)$ 75. समाकल $\int x \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) dx$, $(x > 0)$ बराबर

is equal to:

(1)
$$-x + (1+x^2) \tan^{-1} x + c$$

(2)
$$x - (1+x^2) \cot^{-1} x + c$$

(3)
$$-x + (1+x^2) \cot^{-1} x + c$$

(4)
$$x - (1 + x^2) \tan^{-1} x + c$$

76. If for
$$n \ge 1$$
, $P_n = \int_{1}^{e} (\log x)^n dx$, then 76. यदि $n \ge 1$ के लिए, $P_n = \int_{1}^{e} (\log x)^n dx$ है, तो

 $P_{10} - 90P_8$ is equal to :

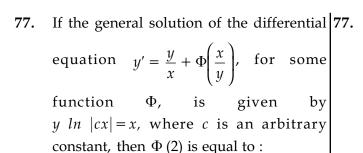
- (1) -9
- 10e
- 9e
- (4) 10

$$(1) \qquad \frac{4}{3}\sqrt{3} \ \pi$$

75. समाकल
$$\int x \cos^{-1} \left(\frac{1 - x^2}{1 + x^2} \right) dx$$
 , $(x > 0)$ बराबर

(1)
$$-x + (1+x^2) \tan^{-1} x + c$$

(2)
$$x - (1+x^2) \cot^{-1} x + c$$


(3)
$$-x + (1+x^2) \cot^{-1} x + c$$

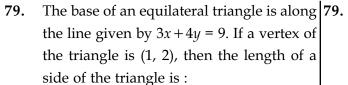
(1)
$$-x + (1+x^2) \tan^{-1} x + c$$

(2) $x - (1+x^2) \cot^{-1} x + c$
(3) $-x + (1+x^2) \cot^{-1} x + c$
(4) $x - (1+x^2) \tan^{-1} x + c$

76. यदि
$$n \ge 1$$
 के लिए, $P_n = \int_1^e (\log x)^n dx$ है, तो

 $P_{10} - 90P_8$ बराबर है :

English: 41 Hindi: 41 Set : 11 Set : 11



- (1) 4

- **78.** A stair-case of length *l* rests against a **78.** vertical wall and a floor of a room,. Let P be a point on the stair-case, nearer to its end on the wall, that divides its length in the ratio 1:2. If the stair-case begins to slide on the floor, then the locus of P is:
 - (1) an ellipse of eccentricity $\frac{1}{2}$
 - an ellipse of eccentricity $\frac{\sqrt{3}}{2}$
 - (3) a circle of radius $\frac{l}{2}$
 - a circle of radius $\frac{\sqrt{3}}{2}l$

- यदि किसी फलन Φ के लिए अवकल समीकरण equation $y' = \frac{y}{x} + \Phi\left(\frac{x}{y}\right)$, for some $y' = \frac{y}{x} + \Phi\left(\frac{x}{y}\right)$, का व्यापक हल $y \ln|cx| = x$, द्वारा प्रदत्त है, जहाँ c एक स्वेच्छ अचर है, तो $\Phi(2)$ बराबर है :

 - लंबाई l की एक सीढ़ी एक उर्ध्वाधर दीवार तथा कमरे के फर्श के साथ खड़ी है। माना इस सीढ़ी पर एक बिंदु P, जो इसके दीवार के साथ लगने वाले सिरे के निकट है, इस प्रकार है कि यह सीढ़ी की लंबाई को 1:2 के अनुपात में बांटता है। यदि सीढी फर्श पर सरकने लगती है, तो P का बिंदु पथ है:
 - (1) उत्केंद्रता $\frac{1}{2}$ वाला एक दीर्घवृत।
 - (2) उत्केंद्रता $\frac{\sqrt{3}}{2}$ वाला एक दीर्घवृत
 - (3) त्रिज्या $\frac{l}{2}$ वाला एक वृत।
 - (4) त्रिज्या $\frac{\sqrt{3}}{2}$ l वाला एक वृत।

- $(1) \qquad \frac{2\sqrt{3}}{15}$
- $(2) \qquad \frac{4\sqrt{3}}{15}$
- (3) $\frac{4\sqrt{3}}{5}$
- $(4) \qquad \frac{2\sqrt{3}}{5}$
- 80. The set of all real values of λ for which exactly two common tangents can be drawn to the circles

$$x^{2} + y^{2} - 4x - 4y + 6 = 0$$
 and
 $x^{2} + y^{2} - 10x - 10y + \lambda = 0$ is the interval :

- (1) (12, 32)
- (2) (18, 42)
- (3) (12, 24)
- (4) (18, 48)

- 79. एक समबाहु त्रिभुज का आधार रेखा 3x + 4y = 9 के अनुदिश है। यदि त्रिभुज का एक शीर्ष (1, 2) है तो त्रिभुज की एक भुजा की लंबाई है:
 - $(1) \qquad \frac{2\sqrt{3}}{15}$
 - $(2) \qquad \frac{4\sqrt{3}}{15}$
 - $(3) \quad \frac{4\sqrt{3}}{5}$
 - $(4) \qquad \frac{2\sqrt{3}}{5}$
- 80. λ के सभी वास्तविक मानों का समुच्चय, जिनके लिए वृत्तों $x^2 + y^2 4x 4y + 6 = 0$ तथा $x^2 + y^2 10x 10y + \lambda = 0$ पर ठीक दो उभयनिष्ठ स्पर्शरेखाएँ खींची जा सकती हों, का जो अंतराल है, वह है :
 - (1) (12, 32)
 - (2) (18, 42)
 - (3) (12, 24)
 - (4) (18, 48)

English: 43 Set: 11 Hindi: 43 Set: 11

- 81. Let L_1 be the length of the common chord of the curves $x^2 + y^2 = 9$ and $y^2 = 8x$, and L_2 be the length of the latus rectum of $y^2 = 8x$, then:
 - (1) $L_1 > L_2$
 - $(2) L_1 = L_2$
 - (3) $L_1 < L_2$
 - $(4) \qquad \frac{L_1}{L_2} = \sqrt{2}$
- **82.** Let P (3 sec θ , 2 tan θ) and

Q (3 sec ϕ , 2 tan ϕ) where $\theta + \phi = \frac{\pi}{2}$, be two distinct points on the hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$. Then the ordinate of the point of intersection of the normals at P and Q is:

- (1) $\frac{11}{3}$
- (2) $-\frac{11}{3}$
- (3) $\frac{13}{2}$
- (4) $-\frac{13}{2}$

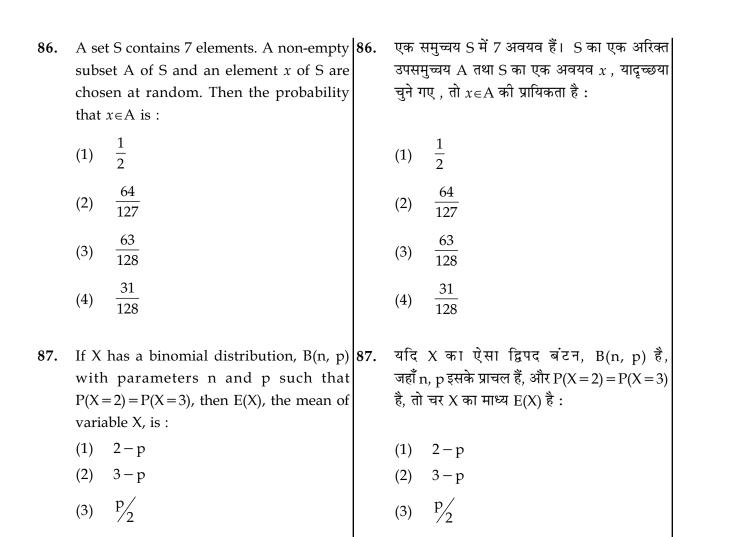
- 1. माना $L_{1,}$ वक्रों $x^2 + y^2 = 9$ तथा $y^2 = 8x$, की उभयनिष्ठ जीवा की लंबाई है, तथा L_2 , $y^2 = 8x$ के नाभिलंब की लंबाई है, तो :
 - (1) $L_1 > L_2$
 - (2) $L_1 = L_2$
 - (3) $L_1 < L_2$
 - $(4) \qquad \frac{L_1}{L_2} = \sqrt{2}$
- 82. माना अतिपरवलय $\frac{x^2}{9} \frac{y^2}{4} = 1$ पर दो भिन्न बिंदु $P(3 \sec \theta, 2 \tan \theta)$ तथा $Q(3 \sec \phi, 2 \tan \phi)$ हैं, जहाँ $\theta + \phi = \frac{\pi}{2}$ है, तो P तथा Q पर खींचे गए अभिलंबों के प्रतिच्छेदन बिंदु की कोटि (ordinate) है:
 - $(1) \frac{11}{3}$
 - (2) $-\frac{11}{3}$
 - (3) $\frac{13}{2}$
 - (4) $-\frac{13}{2}$

83.	Let A $(2, 3, 5)$, B $(-1, 3, 2)$ and
	C (λ , 5, μ) be the vertices of a Δ ABC. If the
	median through A is equally inclined to
	the coordinate axes, then:

- $(1) \quad 5\lambda 8\mu = 0$
- $8\lambda 5\mu = 0$
- $10\lambda 7\mu = 0$
- (4) $7\lambda 10\mu = 0$

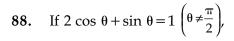
84. The plane containing the line
$$\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$$
 and parallel to $\frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$ को अन्तर्विष्ट करने वाला तथा रेखा $\frac{x}{1} = \frac{y}{2} = \frac{z}{3}$ को अन्तर्विष्ट

the line $\frac{x}{1} = \frac{y}{1} = \frac{z}{4}$ passes through the point:


- (1) (1, -2, 5)
- (2) (1, 0, 5)
- (3) (0, 3, -5)
- (4) (-1, -3, 0)

85. If
$$|c|^2 = 60$$
 and $\overrightarrow{c} \times (\hat{i} + 2\hat{j} + 5\hat{k}) = \overrightarrow{0}$
then a value of $\overrightarrow{c} \cdot (-7\hat{i} + 2\hat{j} + 3\hat{k})$ is

- (1) $4\sqrt{2}$
- (2) 12
- (3) 24
- (4) $12\sqrt{2}$


- 83. माना A (2, 3, 5), B (−1, 3, 2) तथा $C(\lambda, 5, \mu)$ एक त्रिभुज ABC के शीर्ष हैं। यदि A से होकर जाने वाली माध्यिका, निर्देशांक अक्षों पर समान कोण बनाती है, तो :
 - $(1) \quad 5\lambda 8\mu = 0$
 - $(2) \quad 8\lambda 5\mu = 0$
 - (3) $10\lambda 7\mu = 0$
 - (4) $7\lambda 10\mu = 0$
- करने वाला तथा रेखा $\frac{x}{1} = \frac{y}{1} = \frac{z}{4}$ के समांतर समतल, जिस बिंदु से होकर जाता है, वह है:
 - (1) (1,-2,5)
- 85. If $|\vec{c}|^2 = 60$ and $\vec{c} \times (\hat{i} + 2\hat{j} + 5\hat{k}) = \vec{0}$, $|\vec{85}$. यदि $|\vec{c}|^2 = 60$ तथा $\vec{c} \times (\hat{i} + 2\hat{j} + 5\hat{k}) = \vec{0}$, है, then a value of $\stackrel{\rightarrow}{c} \cdot (-7\hat{i} + 2\hat{j} + 3\hat{k})$ is : $\overrightarrow{d} \cdot (-7\hat{i} + 2\hat{j} + 3\hat{k})$ का एक मान है :
 - (1) $4\sqrt{2}$

 - (4) $12\sqrt{2}$

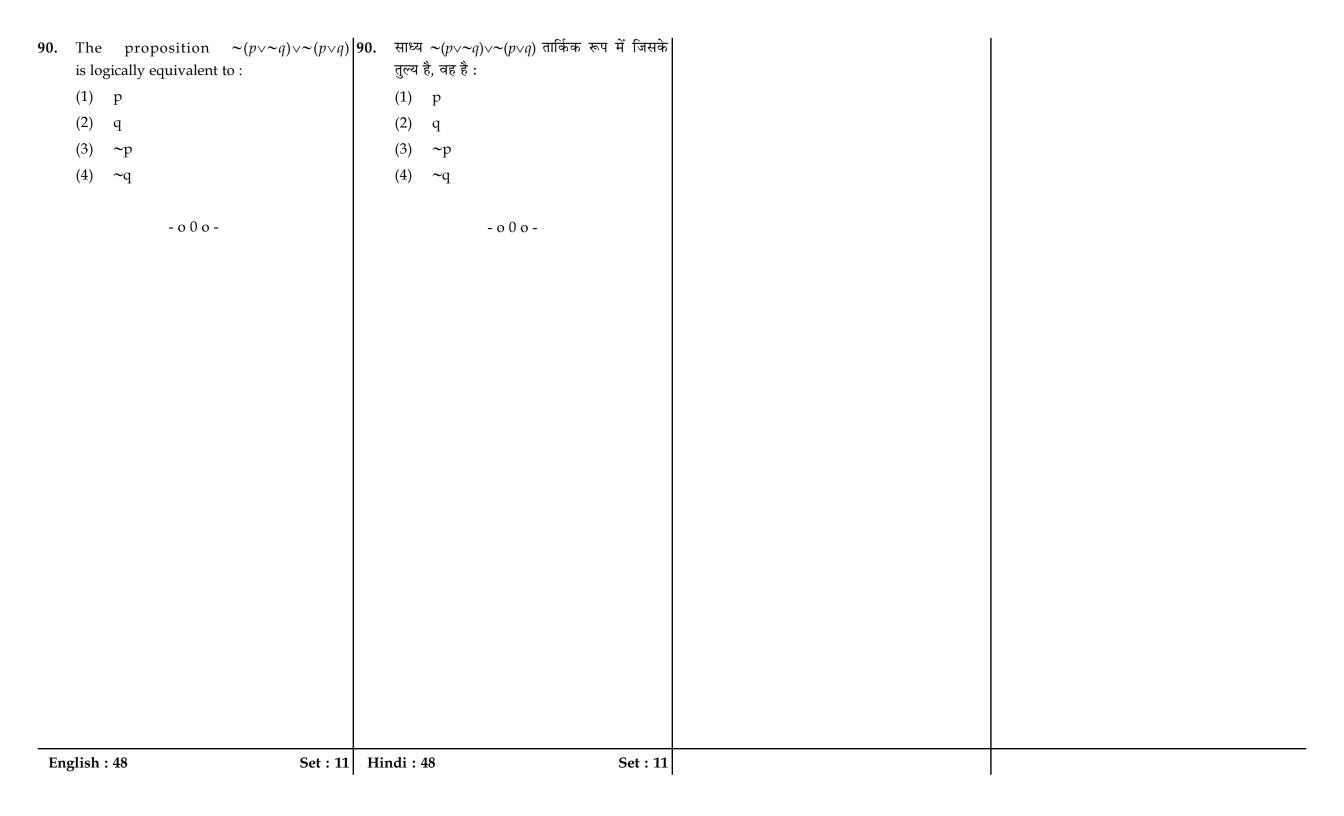
 $(4) \quad p/3$

English: 46 Set: 11 Hindi: 46 Set: 11

then $7 \cos \theta + 6 \sin \theta$ is equal to :

- (1) $\frac{1}{2}$
- (2) 2
- (3) $\frac{1}{2}$
- $(4) \frac{46}{5}$
- 89. The angle of elevation of the top of a vertical tower from a point P on the horizontal ground was observed to be α.
 After moving a distance 2 metres from P towards the foot of the tower, the angle of elevation changes to β. Then the height (in metres) of the tower is :

$$(1) \quad \frac{2\sin\alpha\sin\beta}{\sin(\beta-\alpha)}$$


- (2) $\frac{\sin \alpha \sin \beta}{\cos (\beta \alpha)}$
- (3) $\frac{2 \sin (\beta \alpha)}{\sin \alpha \sin \beta}$
- (4) $\frac{\cos(\beta \alpha)}{\sin \alpha \sin \beta}$

- 88. यदि 2 $\cos \theta + \sin \theta = 1$ $\left(\theta \neq \frac{\pi}{2}\right)$ है, तो $7 \cos \theta + 6 \sin \theta$ बराबर है:
 - $(1) \frac{1}{2}$
 - (2) 2
 - (3) $\frac{11}{2}$
 - (4) $\frac{46}{5}$
- 89. समतल भूमि पर एक बिंदु P से एक ऊर्ध्वाधर मीनार के शिखर का उन्नयन कोण α पाया गया। P से मीनार के पाद की ओर 2 मी. जाने पर, उन्नयन कोण बदल कर β हो जाता है, तो (मी.में) मीनार की ऊँचाई है:

(1)
$$\frac{2 \sin \alpha \sin \beta}{\sin (\beta - \alpha)}$$

- (2) $\frac{\sin \alpha \sin \beta}{\cos (\beta \alpha)}$
- (3) $\frac{2 \sin (\beta \alpha)}{\sin \alpha \sin \beta}$
- (4) $\frac{\cos(\beta \alpha)}{\sin \alpha \sin \beta}$

English: 47 Set: 11

