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Chapter 10 

Heteroskedasticity 

 

In the multiple regression model 

 ,y X     

it is assumed that  

2( ) ,V I     

i.e., 

2 2( ) ,

( ) 0, 1, 2,..., .
i

i j

Var

Cov i j n

 
 



  
 

In this case,  the diagonal elements of the covariance matrix of   are the same indicating that the variance of 

each i  is same and off-diagonal elements of the covariance matrix of   are zero indicating that all 

disturbances are pairwise uncorrelated. This property of constancy of variance is termed as homoskedasticity 

and disturbances are called as homoskedastic disturbances. 

 

In many situations, this assumption may not be plausible, and the variances may not remain the same. The 

disturbances whose variances are not constant across the observations are called heteroskedastic disturbance, 

and this property is termed as heteroskedasticity. In this case  

 2( ) , 1, 2,...,i iVar i n    

and disturbances are pairwise uncorrelated. 

 

The covariance matrix of disturbances is 
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Graphically, the following pictures depict homoskedasticity and heteroskedasticity. 

 

                Homoskedasticity 

  

Heteroskedasticity (Var(y) increases with x) Heteroskedasticity (Var(y) decreases with x) 

 

Examples: Suppose in a simple linear regression model, x  denote the income and y  denotes the expenditure 

on food.  It is observed that as the income increases, the expenditure on food increases because of the choice 

and varieties in food increase, in general, up to a certain extent.  So the variance of observations on y  will not 

remain constant as income changes. The assumption of homoscedasticity implies that the consumption pattern 

of food will remain the same irrespective of the income of the person.  This may not generally be a correct 

assumption in real situations. Instead, the consumption pattern changes and hence the variance of y  and so the 

variances of disturbances will not remain constant. In general, it and will be increasing as income increases. 
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In another example, suppose in a simple linear regression model, x  denotes the number of hours of practice for 

typing and y  denotes the number of typing errors per page. It is expected that the number of typing mistakes 

per page decreases as the person practices more. The homoskedastic disturbances assumption implies that the 

number of errors per page will remain the same irrespective of the number of hours of typing practice which 

may not be true in practice. 

 

Possible reasons for heteroskedasticity: 

There are various reasons due to which the heteroskedasticity is introduced in the data. Some of them are as 

follows: 

1. The nature of the phenomenon under study may have an increasing or decreasing trend. For example, 

the variation in consumption pattern on food increases as income increases. Similarly, the number of 

typing mistakes decreases as the number of hours of typing practise increases. 

 

2. Sometimes the observations are in the form of averages, and this introduces the heteroskedasticity in the 

model. For example,  it is easier to collect data on the expenditure on clothes for the whole family rather 

than on a particular family member.  Suppose in a  simple linear regression model 

0 1 , 1, 2,..., , 1, 2,...,ij ij ij iy x i n j m        

ijy  denotes the expenditure on cloth for the  thj  family having jm  members and ijx  denotes the age of 

the thi person in the thj  family.  It is difficult to record data for an individual family member, but it is 

easier to get data for the whole family.  So 'ijy s  are known collectively. 

 

Then instead of per member expenditure, we find the data on average spending for each family member 

as 

 
1

1 jm

i ij
jj

y y
m 

   

and the model becomes 

 0 1 .i i iy x      

If we assume 2( ) 0, ( ) ,ij ijE Var     then 

 2

( ) 0
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
 



Regression Analysis  |  Chapter 10  | Heteroskedasticity  |   Shalabh, IIT Kanpur 
 444

which indicates that the resultant variance of disturbances does not remain constant but  depends on the 

number of members in a family jm .  So heteroskedasticity enters in the data.  The variance will remain 

constant only when all 'jm s  are same. 

 

3. Sometimes the theoretical considerations introduce the heteroskedasticity in the data. For example, 

suppose in the simple linear  model 

0 1 , 1,2,...,i i iy x i n      , 

iy  denotes the yield of rice and ix  denotes the quantity of fertilizer in an agricultural experiment. It is 

observed that when the quantity of fertilizer increases, then yield increases. In fact, initially, the yield 

increases when the quantity of fertilizer increases. Gradually, the rate of increase slows down, and if 

fertilizer is increased further, the crop burns. So notice that 1  changes with different levels of fertilizer.   

In such cases, when 1  changes, a possible  way is to express it as a random  variable with constant 

mean 1  and constant variance 2  like 

  1 1 , 1,2,...,i iv i n     

 with 

 2( ) 0, ( ) , ( ) 0.i i i iE v Var v E v     

So the complete model becomes 

  

0 1

1
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0
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i i

i i i i i

i i
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x w

  

 
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 

  

 

    

  

 

where i i i iw x v   is like a new random error component. So 
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  

 

 

So variance depends on  i  , and thus heteroskedasticity is introduced in the model. Note that we assume 

homoskedastic  disturbances for the model 

  0 1 1 1,i i i i iy x v          

but finally ends up with heteroskedastic disturbances. This is due to theoretical considerations. 
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4.   The skewness in the distribution of one or more explanatory variables in the model also causes 

heteroskedasticity in the model. 

5.    The incorrect data transformations and wrong functional form of the model can also give rise to the 

heteroskedasticity problem. 

 

Tests for heteroskedasticity 

The presence of heteroskedasticity affects the estimation and test of hypothesis. The heteroskedasticity can 

enter into the data due to various reasons. The tests for heteroskedasticity assume a specific nature of 

heteroskedasticity. Various  tests are available in the literature, e.g.,  

1. Bartlett test 

2. Breusch Pagan test 

3. Goldfeld Quandt test 

4. Glesjer test 

5. Test based on  Spearman’s rank correlation coefficient 

6. White test 

7. Ramsey test 

8. Harvey Phillips test 

9. Szroeter test 

10. Peak test (nonparametric) test 

We discuss the first five tests.  

 

1. Bartlett’s test 

It is a test for testing the null hypothesis  

 2 2 2 2
0 1 2: ... ...i nH          

This hypothesis is termed as the hypothesis of  homoskedasticity. This test can be used  only when replicated 

data is available. 

 

Since in the model 

 2
1 1 2 2 ... , ( ) 0, ( ) , 1,2,..., ,i i i k ik i i i iy X X X E Var i n               

only one observation iy   is available to find 2 ,i  so the usual tests can not be applied.  This problem can be 

overcome if replicated data is available. So consider the model of the form 
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 * *
i i iy X     

where  *
iy  is a im 1  vector,  iX  is im k  matrix,    is 1k   vector and *

i  is 1im   vector. So replicated data 

is  now available for every *
iy  in the following way: 

 

* *
1 1 1 1

* *
2 2 2 2

* *

consists of observations

consists of observations

consists of observations.n n n n

y X m

y X m

y X m

 

 

 

 

 

 


 

All the individual model can be written as 

 

* *
11 1

* *
22 2

* *
nn n

Xy

Xy

Xy








    
    
         
           

 
 

or  * *y X     

where *y  is a vector of order 
1 1

1, is
n n

i i
i i

m X m k
 

       
   
   matrix,    is 1k   vector and *  is 

1

1
n

i
i

m


  
 
  

vector.  Apply OLS to this model yields 

 1ˆ ( ' ) ' *X X X y   

and obtain the residual vector 

 * * ˆ
i i ie y X   . 

Based on this, obtain 

 

2 * *

2

2 1

1

1
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.
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i i i
i

n

i i
i

n

i
i

s e e
m k

m k s
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m k




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










 

Now apply Bartlett’s test as 

 
2

2
2

1

1
( ) log

n

i
i i

s
m k

C s




   

which has asymptotic  2  distribution with  ( 1)n   degrees of freedom where 

 
1
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1 1 1
1 .

3( 1) ( )

n

n
i i

i
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

 
  
          



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Another variant of Bartlett’s test  

Another variant of Bartlett’s test  is based on the likelihood ratio test statistic 

 
/ 22

2
1

in
m

i

i

s
u

s

 
  

 
  

where   

 

 22

1

2 2

1

1

1
, 1, 2,..., ; 1, 2,...,

1
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in

i ij i i
ji

m

i i
i

m

i
i

s y y i m j n
n

s n s
n

n n







   











 

To obtain an unbiased test and modification of -2 ln u  which is a closer approximation to 

2
1 0under , Bartlettm H   test replaces  in  by ( 1)in   and divide by a scalar constant. This leads to the statistic 

 

2 2

1

1

ˆ ˆ( ) log ( 1) log

1 1 1
1

3( 1) 1

m

i i
i

m

i i

n m n
M

m n n m

 




  


  
       




 

which has a  2  distribution with ( 1)m  degrees of freedom under 0H  and  

 

2 2

1

2 2

1

1
ˆ ( )

1

1
ˆ ˆ( 1) .
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i ij i
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i i
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

 
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 


 
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


 

In experimental sciences, it is easier to get replicated data, and this test can be easily applied.  In real-life 

applications, it is challenging to get replicated data, and this test may not be applied. This difficulty is overcome 

in Breusch Pagan test. 
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2. Breusch Pagan test 

This test can be applied when the replicated data is not available, but only single observations are available. 

When it is suspected that the variance is some function (but not necessarily multiplicative)  of more than one 

explanatory variable, then Breusch Pagan test can be used. 

 
Assuming that under the alternative hypothesis 2

i  is expressible as  

 2 ' * *
1

ˆ( ) ( )i i ih Z h Z       

where h  is some unspecified function and is independent of  i , 

 ' *'
2 3(1, )(1, , ,..., )i i i i ipZ Z Z Z Z   

is the vector of observable explanatory variables with first element unity and *
1 1 2( , ) ( , ,..., )i p         is a 

vector of unknown coefficients related to   with the first element being the intercept term. The heterogeneity is 

defined by these p  variables. These 'iZ s  may also include some 'X s  also. 

 
Specifically, assume that 

 2
1 2 2 ... .i i p ipZ Z        

The null hypothesis  

 2 2 2
0 1 2: ... nH       

can be expressed as  

 0 2 3: ... 0pH       . 

If 0H  is accepted , it implies that 2 2 3 3, ,...,i i p ipZ Z Z    do not have  any effect on  2
i  and we get 2

1i  . 

 

The test procedure is as follows: 

1. Ignoring heterogeneity, apply OLS to   

  1 2 1 ...i i k ik iy X X         

 and obtain residual 

  
1( ' ) ' .

e y Xb

b X X X Y

 


 

2. Construct the variables 

  
2 2

2

1

i i
i n

res
i

i

e ne
g

SS
e n



 
 
 
 


 

 where resSS  is the residual sum of squares based on ' .ie s  



Regression Analysis  |  Chapter 10  | Heteroskedasticity  |   Shalabh, IIT Kanpur 
 999

3. Run regression of g  on  1 2, ,..., pZ Z Z  and get residual sum of squares *
resSS . 

4. For testing, calculate the test statistic 

  2 *

1

1

2

n

i res
i

Q g SS


   
 
  

which is asymptotically distributed as 2  distribution with  ( 1)p   degrees of freedom. 

5. The decision rule is to reject 0H  if  2
1 ( 1).Q m    

 
 This test is very simple to perform. 

 A fairly general form is assumed for heterogeneity, so it is a very general test. 

 This is an asymptotic test. 

 This test is quite powerful in the presence of heteroskedasticity. 

 

3. Goldfeld Quandt test 

This test is based on the assumption that 2
i  is positively related to ,ijX i.e.,  one of the explanatory variables 

explains the heteroskedasticity in the model. Let thj  explanatory variable explains the heteroskedasticity, so  

2

2 2

    

or .

i ij

i ij

X

X



 




 

The test procedure is as follows: 

 

1. Rank  the observations according to the decreasing order of  jX . 

2. Split the observations into two equal parts leaving c  observations  in the middle. 

So each part contains 
2

n c
 observations provided .

2

n c
k


  

3. Run two separate regression in the two parts using OLS and obtain the residual sum of squares 1resSS  

and 2resSS . 

4. The test statistic is 

2
0

1

res

res

SS
F

SS
  

 which follows  F distribution, i.e., ,
2 2

n c n c
F k k

    
 

 when 0H  true. 

5. The decision rule is to reject 0H  whenever 0 1 ,
2 2

n c n c
F F k k

     
 

. 
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 This test is a simple test, but it is based on the assumption that one of the explanatory variables helps in 

determining the heteroskedasticity. 

 Then the test is an exact finite sample test. 

 The only difficulty in this test is that the choice of c  is not obvious. If a large value of c  is chosen, then 

it reduces the degrees of freedom 
2

n c
k


 , and the condition 

2

n c
k


  may be violated. 

 
On the other hand, if a smaller value of c  is chosen, then the test may fail to reveal the heteroskedasticity.  The 

basic objective of the ordering of observations and deletion of observations in the middle part may not reveal 

the heteroskedasticity effect. Since the first and last values of 2
i  gives the maximum discretion,  so removal of 

smaller value may not give the proper idea of heteroskedasticity.  Considering these two points,  the working 

choice of  c  is suggested as 
3

n
c  .   

Moreover, the choice of ijX is also difficult. Since 2 ,i ijX   so if all important variables are included in the 

model, then it may be difficult  to decide that which of the variable is influencing the heteroskedasticity. 

 

4. Glesjer test: 

This test is based on the assumption that 2
i  is influenced by one variable  ,Z  i.e., there is only one variable 

which is influencing the heteroskedasticity.  This variable could be either one of the explanatory variable or it  

can be chosen from some extraneous sources also. 

 

The test procedure is as follows: 

1. Use OLS and obtain the residual vector e  on the basis of available study and explanatory variables. 

2. Choose Z   and apply OLS to 

0 1
h

i i ie Z v     

        where iv  is the associated disturbance term. 

3. Test  0 1: 0H    using t -ratio test statistic. 

4. Conduct the test for 
1

1,
2

h    .  So the test procedure is repeated four times.  

In practice, one can choose any value of  h .  For simplicity, we choose 1h  . 

 The test has only asymptotic justification and the four choices of  h  give generally satisfactory results.  

 This test sheds light on the nature  of heteroskedasticity. 
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5. Spearman’s rank correlation test 

It  id  denotes  the difference in the ranks assigned to two different  characteristics of the thi  object or  

phenomenon and n  is the  number of objects or phenomenon ranked, then the Spearman’s rank correlation 

coefficient is defined as  

 

2

1
2

1 6 ; 1 1.
( 1)

n

i
i

d
r r

n n


 
 
     

 
 
 


 

This can be used for testing the hypothesis about the heteroskedasticity. 

Consider the model 

 0 1i i iy X     . 

1. Run the regression of y  on X  and obtain the residuals e . 

2. Consider ie . 

3. Rank both ie  and ˆ(or )i iX y  in  an ascending (or descending) order. 

4. Compute rank correlation coefficient r  based on ie  and ˆ(or )i iX y . 

5. Assuming that the population rank correlation coefficient is zero and 8,n  use the test statistic  

0 2

2

1

r n
t

r





 

       which follows a t -distribution with  ( 2)n  degrees of freedom. 

6. The decision rule is to reject the null hypothesis of heteroskedasticity whenever  0 1 ( 2).t t n   

 If there are more than one explanatory variables, then rank correlation coefficient can be computed  

       between ie  and each of the explanatory variables separately and can be tested using 0t . 

Estimation under heteroskedasticity 

Consider the model 

 y X    

with k  explanatory variables and assume that 

 

2
1

2
2

2

( ) 0

0 0

0 0
( ) .

0 0 n
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  
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

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The OLSE is 

 1( ' ) ' .b X X X y  

Its estimation error is 

 1( ' ) 'b X X X    

and 

 1( ) ( ' ) ' ( ) 0.E b X X X E     

Thus OLSE remains unbiased even under heteroskedasticity. 

 

The covariance matrix of  b  is 

 1 1

1 1

( ) ( )( ) '

( ' ) ' ( ') ( ' )

( ' ) ' ( ' )

V b E b b

X X X E X X X

X X X X X X

 

 

 

  



 

 

which is not the same as conventional expression. So OLSE is not efficient under heteroskedasticity as 

compared under homoskedasticity.  

 

Now we check if 2 2( )i iE e  or not where ie  is the ith residual. 

The residual vector is 

 e y Xb H    

 
 

1

20,0,...,0,1,0,...0

' '

i

n

i i

e

e
e

e

e H

 
 
 
 
 
 

 



 

 

where i  is a 1n  vector with all elements zero except  the thi  element which is unity and  

1( ' ) 'H I X X X X  .  Then 

 
2

2

' . ' ' '

( ) ' ( ') '

i i i i i

i i i i i

e e e H H

E e HE H H H




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   
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Thus  2 2( )i iE e   and so 2
ie  becomes a biased estimator of  2

i  in the presence of heteroskedasticity. 

 

In the presence of heteroskedasticity, use the generalized least squares estimation. The  generalized least 

squares estimator (GLSE) of   is 

 1 1 1ˆ ( ' ) ' .X X X y       

Its estimation error is obtained as 

 
1 1 1

1 1 1

ˆ ( ' ) ' ( )

ˆ ( ' ) ' ).

X X X X

X X X

  

  

  

  

   

   
 

Thus 

 

1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1

ˆ( ) ( ' ) ' ( ) 0

ˆ ˆ ˆ( ) ( )( )

( ' ) ' ( ) ( ' )

( ' ) ' ( ' )

( ' ) .

E X X X E

V E

X X X E X X X

X X X X X X

X X

  

    



  

     

     

 

    

  

    

    

 

 

Example:  Consider a simple linear regression model 

 0 1 , 1, 2,..., .i i iy x i n       

The variances of OLSE and GLSE of   are  

 

2 2

1
2

2

1

( )
( )

( )

n

i i
i

n

i
i

x x
Var b

x x








  
 




 and 

2

2
1

ˆ( )
( )

n
i

i i

Var
x x





  respectively. 
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Consider 

2

2

1

2 2 2
2

1 1

( )ˆ( )

( ) 1
( ) ( )

            Square of the correlation coefficient betweene  ( )   and 

           1

ˆ( ) ( )

n

i
i

n n

i i i
i i i

i
i i

i

x x
Var

Var b
x x x x

x x
x x

Var Var b













 

 
 
 

  
           

 
   

 


 



 

.

  

So efficient of OLSE and GLSE depends upon the correlation coefficient between ( )i ix x   and 
( )i

i

x x




. 

The generalized least squares estimation assumes that    is known, i.e., the nature of heteroskedasticity is 

completely specified.  Based on this  assumption, the possibilities of following two cases arise: 

   is completely specified or  

   is not completely specified.   

  

We consider both the cases as follows: 

 

Case 1: 2 'i s  are prespecified:  

Suppose 2 2 2
1 2, ,..., n    are completely known in the model 

 1 2 2 ...i i k ik iy X X        . 

Now deflate the model by ,i  i.e., 

 2
1 2

1
...i i ik i

k
i i i i i

y X X   
    

     . 

Let  * ,i
i

i




   then  
2

* *
2

( ) 0, ( ) 1.i
i i

i

E Var
 


    Now OLS can be applied to this model and usual tools for 

drawing statistical inferences can be used. 

Note that when the model is deflated, the intercept term is lost as 1 / i   is itself a variable. This point has to be 

taken care of in software output. 
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Case 2:    may not be completely specified 

Let  2 2 2
1 2, ,..., n    are partially known and suppose 

 2 2
i ijX    

or    2 2 2
i ijX    

but  2  is not available.  Consider the model 

 1 2 2 ...i i k ik iy X X         

and deflate it by ijX   as 

 21
2 ...i i ik i

k
ij ij ij ij ij

y X X

X X X X X    

       . 

 

Now apply OLS  to this transformed model and use the usual statistical tools for drawing inferences. 

 

A caution is to be kept is mind while doing so. This  is illustrated in the following example with one 

explanatory variable model. 

 

Consider the model 

 0 1 .i i iy x      

Deflate it by  ix , so we get 

 0
1

i i

i i i

y

x x x

    . 

Note that the roles of  0  and 1  in original and deflated models are interchanged. In the original model, 0  is 

the intercept term and 1  is the slope parameter whereas in the deflated model,  1  becomes the intercept term 

and 0  becomes the slope parameter.  So essentially, one can use OLS but need to be careful in identifying the 

intercept term and slope parameter, particularly in the software output. 


