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Chapter 13 

Variable Selection and Model Building 

 

The complete regression analysis depends on the explanatory variables present in the model. It is understood 

in the regression analysis that only correct and important explanatory variables appear in the model. In 

practice,  after ensuring the correct functional form of the model, the analyst usually has a pool of 

explanatory variables which possibly influence the process or experiment.  Generally, all such candidate 

variables are not used in the regression modelling, but a subset of explanatory variables is chosen from this 

pool.  How to determine such an appropriate subset of explanatory variables to be used in regression is called 

the problem of variable selection. 

 

While choosing a subset of explanatory variables, there are two possible options: 

1. In order to make the model as realistic as possible,  the analyst may include as many as 

possible explanatory variables. 

2. In order to make the model as simple as possible, one way includes only a fewer number of 

explanatory variables. 

 

Both approaches have their consequences. In fact, model building and subset selection have contradicting 

objectives. When a large number of variables are included in the model, then these factors can influence the 

prediction of the study variable y .  On the other hand, when a small number of variables are included then 

the predictive variance of  ŷ  decreases.  Also,  when the observations on more number are to be collected, 

then it involves more cost, time, labour etc.  A compromise between these consequences is striked  to select 

the “best regression equation”.  

 

The problem of variable selection is addressed assuming that the functional form of the explanatory variable, 

e.g., 2x , 
1

, log x
x

 etc., is known and no outliers or influential observations are present in the data.  Various 

statistical tools like residual analysis, identification of influential or high leverage observations, model 

adequacy etc. are linked to variable selection.  In fact, all these processes should be solved simultaneously. 

Usually,  these steps are iteratively employed. In the first step, a  strategy for variable selection is opted, and 

the model is fitted with selected variables. The fitted model is then checked for the functional form, outliers, 
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influential observations etc.  Based on the outcome, the model is re-examined, and the selection of variable is 

reviewed again. Several iterations may be required before the final adequate model is decided. 

There can be two types of incorrect model specifications. 

1. Omission/exclusion of relevant variables. 

2. Inclusion of irrelevant variables. 

 

Now we discuss the statistical consequences arising from both situations. 

 

1. Exclusion of relevant variables: 

In order to keep the model simple, the analyst may delete some of the explanatory variables which may be of 

importance from the point of view of theoretical considerations. There can be several reasons behind such 

decision, e.g.,  it may be hard to quantify the variables like the taste, intelligence etc.    Sometimes it may be 

difficult to take correct observations on the variables like income etc. 

 

Let there be k  candidate explanatory variables out of which suppose r   variables  are included and ( )k r  

variables are to be deleted from the model. So partition  the X  and   as 

 1 2 1 2
( ) 1 ( ) 1)

and
n k n r n k r r k r

X X X   
      

   
    
   

. 

The model 2, ( ) 0, ( )y X E V I         can be expressed as   

 1 1 2 2y X X      

which is called a full model or true model. 

 

After dropping the r  explanatory variable in the model, the new model is 

 1 1y X     

which is called a misspecified model or false model. 

 

Applying OLS to the  false model, the OLSE of  1  is 

 ' 1 '
1 1 1 1( ) .Fb X X X y  
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The estimation error is obtained as follows: 

 

' 1 '
1 1 1 1 1 1 2 2

' 1 ' ' 1 '
1 1 1 1 2 2 1 1 1

' 1 '
1 1 1 1 1

( ) ( )

( ) ( )

( )

F

F

b X X X X X

X X X X X X X

b X X X

  

  

  



 



  

  

  

 

where   ' 1 '
1 1 1 2 2( )X X X X  . 

 

Thus 

 
' 1

1 1 1( ) ( ) ( )FE b X X E  


  


 

which is a linear function of  2 , i.e., the coefficients of  excluded variables. So 1Fb  is biased, in general. 

The bias vanishes if  '
1 2 0,X X   i.e., 1X  and  2X  are orthogonal or uncorrelated. 

 

The mean squared error matrix of 1Fb  is 

 

1 1 1

' 1 ' 1 ' ' 1 ' ' 1
1 1 1 1 1 1 1 1 1 1 1 1

2 ' 1 ' ' 1
1 1 1 1 1 1

2 ' 1
1 1

( ) ( )( ) '

' ' ( ) ( ) ' ( ) ' ( )

' 0 0 ( ) ( )

' ( ) .

F F FMSE b E b b

E X X X X X X X X X X X X

X X X IX X X

X X

 

   

 

 

   

 



  

     
   

 

 

 

So efficiency generally declines. Note that the second term is the conventional form of MSE. 

 

The residual sum of squares is  

 2 '
ˆ resSS e e

n r n r
  

 
 

1 1 1

' 1 '
1 1 1 1 1

where ,

( ) .

Fe y X b H y

H I X X X X

  

 
 

Thus 

 

1 1 1 1 2 2

1 2 2

1 2 2

1 1 1 2 2 1 2 2

' ' ' ' ' ' ' ' '
2 2 1 1 2 2 2 2 1 2 2 1 2 2 1 1 1 1 2 2 1

( )

0 ( )

( ).

( ) ( )

( ' ' ).

H y H X X

H X

H X

y H y X X H X

X H H X X H X H X X H H X H

  
 

 

    

           

  

  

 

    

     
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2 ' '
2 2 1 2 2

' ' 2
2 2 1 2 2

2 ' '
2 2 1 2 2

1
( ) ( ) 0 0 ( ' )

1
) ( )

1
.

E s E X H X E H
n r

X H X n r
n r

X H X
n r

   

  

  

     

    

 


 

Thus  2s   is a biased estimator of  2  and  2s  provides an overestimate of  2 .  Note that even if  '
1 2 0,X X    

then also 2s  gives an overestimate of 2 .  So the statistical inferences based on this will be faulty. The t -

test and confidence region will be invalid in this case. 

 

If the response is to be predicted at ' '
1 2' ( , ),x x x  then using the  full model, the predicted value is  

 1ˆ ' '( ' ) 'y x b x X X X y   

with 

 2 1

ˆ( ) '

ˆ( ) 1 '( ' ) .

E y x

Var y x X X x



 



   
    

 

When the subset model is used then the predictor is 

 '
1 1 1ˆ Fy x b  

and then 

 

' ' 1 '
1 1 1 1 1

' ' 1 '
1 1 1 1 1 1 2 2

' ' 1 '
1 1 1 1 1 1 2 2

' ' ' 1 '
1 1 1 1 1 1 2 2

' '
1 1

ˆ( ) ( ) ( )

( ) ( )

( ) ( )

( )

.i

E y x X X X E y

x X X X E X X

x X X X X X

x x X X X X

x x

  

 

 

 











  

 

 

 

 

Thus  1ŷ  is a biased predictor of  y .  It is unbiased when '
1 2 0.X X    The MSE of predictor is 

  22 ' ' 1 ' '
1 1 1 1 1 1 2 2ˆ( ) 1 ( )MSE y x X X x x x        . 

Also 

 1ˆ ˆ( ) ( )Var y MSE y  

provided '
2 2 2

ˆ( )V     is positive semidefinite. 
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2. Inclusion of irrelevant variables 

Sometimes due to enthusiasm and to make the model more realistic, the analyst may include some 

explanatory variables that are not very relevant to the model. Such variables may contribute very little to the 

explanatory power of the model. This may tend to reduce the degrees of freedom ( )n k  and consequently, 

the validity of inference drawn may be questionable.   For example, the value of the coefficient of 

determination will increase, indicating that the model is getting better, which may not really be true. 

 

Let the true model be  

 2, ( ) 0, ( )y X E V I         

which comprise  k  explanatory variable.  Suppose now r  additional explanatory  variables are added to the 

model and the resulting model becomes 

 y X Z      

where  Z  is a n r  matrix of  n  observations on each of the r  explanatory variables and   is  1r  vector 

of regression coefficient associated with Z  and   is disturbance term. This model is termed as a false 

model. 

 

Applying OLS to false model, we get 

 

1
' ' '

' ' '

' ' '

' ' '

' ' ' (1)

' ' ' (2)

F

F

F

F

F F

F F

b X X X Z X y

c Z X Z Z Z y

bX X X Z X y

cZ X Z Z Z y

X Xb X ZC X y

Z Xb Z ZC Z y


     

     
    

    
    

    

  
 

                        

where   Fb  and FC  are the OLSEs of    and    respectively. 

 

Premultiply equation (2) by 1' ( ' ) ,X Z Z Z   we get 

 1 1 1' ( ' ) ' ' ( ' ) ' ' ( ' ) ' .          (3)F FX Z Z Z Z Xb X Z Z Z Z ZC X Z Z Z Z y                                 
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Subtracting equation (1) from (3), we get 

1 1

1 1

1

1

          ' ' ( ' ) ' ' ' ( ' ) '

          ' ( ' ) ' ' ( ' ) '

    ( ' ) '

where ( ' ) '.

F

F

F Z Z

Z

X X X Z Z Z Z X b X y X Z Z Z Z y

X I Z Z Z Z Xb X I Z Z Z Z y

b X H X X H y

H I Z Z Z Z

 

 





    
        

 

 

 

 

The estimation error of Fb  is  

 

1

1

1

( ' ) '

( ' ) ' ( )

( ' ) ' .

F Z Z

Z Z

Z Z

b X H X X H y

X H X X H X

X H X X H

 

  









  

  



 

Thus 

 1( ) ( ' ) ' ( ) 0F Z ZE b X H X X H E     

so Fb  is unbiased even when some irrelevant variables are added to the model. 

The covariance matrix is 

 

   

 

   
 

1

1 1

1 12

12

( )

' ' ' ( ' )

' ' '

' .

F F F

Z Z Z Z

Z Z Z Z

Z

V b E b b

E X H X X H H X X H X

X H X X H IH X X H X

X H X

 







 

 



  

 
 





 

If  OLS is applied to true model, then 

 1( ' ) 'Tb X X X y  

with  ( )TE b   

 2 1( ) ( ' ) .TV b X X   

 

To compare andF Tb b ,  we use the following result. 

 

Result:  If andA B  are two positive definite matrices then A B  is  at least positive semi-definite if 

1 1B A   is also at least positive semi-definite. 
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Let  

1

1

1 1

1

1

( ' )

( ' )

' '

' ' ' ( ' ) '

' ( ' ) '

Z

Z

A X H X

B X X

B A X X X H X

X X X X X Z Z Z Z X

X Z Z Z Z X





 









  

  



 

which is at least positive semidefinite matrix. This implies that the efficiency declines unless ' 0.X Z    If 

' 0,X Z   i.e.,  andX Z  are orthogonal, then both are equally efficient. 

The residual sum of squares under the false model is  

 '
res F FSS e e  

where 

   

1

1 1

1

1 1

1

1

1

2

( ) '

( ' ) ' ( ' ) '

( ' ) '( )

( ' ) ' ( ' ) '

( ' ) '

( ' ) '

( ' ) '

: idempotent.

F F F

F Z Z

F F

F

Z z

XZ

Z

Zx Z Z

ZX ZX

e y Xb ZC

b XH X X H y

C Z Z Z y Z Z Z Xb

Z Z Z y Xb

Z Z Z I X X H X X H y

Z Z Z H y

H I Z Z Z Z

H I X X H X X H

H H



 



 







  



 

 

   


 

 



 

So 

 

1 1

1 1

* *

( ' ) ' ( ' ) '

( ' ) ' ( ' ) '

( )

where .

F Z Z ZX

Z Z ZX

ZX Z ZX

Z ZX

ZX ZX Z ZX

e y X X H X X H y Z Z Z Z H y

I X X H X X H Z Z Z Z H y

H I H H y

H H y

H y H H H

 

 

  

    
    



 

 

Thus 

        

'

*

'

'

'

res F F

Z ZX ZX Z

Z ZX

ZX

SS e e

y H H H H y

y H H y

y H y








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2 *

2

2

( ) ( )

( )

.

res ZX

res

E SS tr H

n k r

SS
E

n k r









  

     

 

So  resSS

n k r 
 is an unbiased estimator of  2 . 

 
A comparison of exclusion and inclusion of variables is as follows: 

 Exclusion type Inclusion type 

Estimation of coefficients Biased Unbiased 

Efficiency Generally declines Declines 

Estimation of the disturbance term Over-estimate Unbiased 

Conventional test of hypothesis and 

confidence region 

Invalid and faulty inferences Valid though erroneous 

 

Evaluation of subset regression model 

A question arises after the selection of subsets of candidate variables for the model, how to judge which 

subset yields better regression model. Various criteria have been proposed in the literature to evaluate and 

compare the subset regression models. 

 
1. Coefficient of determination 

The coefficient of determination is the square of multiple correlation coefficient between the study variable 

y  and set of explanatory variables 1 2, ,..., pX X X  denotes as  2.pR   Note that 1 1iX   for all  1, 2,...,i n  

which simply indicates the need of intercept term in the model without which the coefficient of 

determination can not be used. So essentially, there will be a subset  of ( 1)p   explanatory variables and one 

intercept term in the notation 2.pR  

The coefficient of determination based on such variables is 

 

2 ( )

( )
1

reg
p

T

res

T

SS p
R

SS

SS p

SS



 
 

where ( )regSS p  and ( )resSS p  are the sum of squares due to regression and residuals,  respectively in a subset 

model based on ( 1)p   explanatory variables. 



Regression Analysis  |  Chapter 13  |  Variable Selection and Model Building  |  Shalabh, IIT Kanpur 
 999

Since there are k  explanatory variables available and we select only ( 1)p   out of them, so there are 

1

k

p

 
  

 possible choices of subsets. Each such choice will produce one subset model. Moreover, the 

coefficient of determination has a tendency to increase with the increase in p . 

So proceed as follows: 

 Choose an appropriate value of p , fit the model and obtain 2.pR  

 Add one variable, fit the model and again obtain 2
1pR  . 

 Obviously 2 2
1 .p pR R    If  2 2

1p pR R    is small, then stop and choose the value of  p  for subset 

regression. 

 If 2 2
1p pR R   is high, then keep on adding variables up to a  point where an additional variable 

does not produce a large change in the value of 2
pR  or the increment in 2

pR  becomes small. 

To know such value of p , create a plot of 2 versus .pR p   For example, the curve  will look like as in the  

following figure.  

 
Choose the value of p  corresponding to a value of  2

pR  where the “knee” of the curve is clearly seen. Such 

choice of p may not be unique among different analyst. Some experience and judgment of analyst will be 

helpful in finding the appropriate and satisfactory value of  p . 

 

To choose a satisfactory value analytically, a solution is a test which can identify the model with 2R  which 

does not significantly differ from the 2R  based on all the explanatory variables. 

 

 



Regression Analysis  |  Chapter 13  |  Variable Selection and Model Building  |  Shalabh, IIT Kanpur 
 101010

Let 

 2 2
0 1 , ,1 (1 )(1 )k n kR R d     

where  , ,

( , 1)

1n k

kF n n k
d

n k



 


 

 and 2
1kR   is the value of  2R  based on all ( 1)k   explanatory variables. A 

subset with  2 2
0R R  is called an 2R - adequate(α) subset . 

 

2. Adjusted coefficient of determination 

The adjusted coefficient of determination has certain advantages over the usual coefficient of determination. 

The adjusted  coefficient of determination based on p -term model is  

 2 21
( ) 1 (1 ).adj p

n
R p R

n p

 
    

 

An advantage of 2 ( )adjR p  is that it does not necessarily increase as p  increases. 

 

If there are r  more explanatory variables which  are added to a p  term model then 

 2 2( ) ( )adj adjR p r R p   

if and only if the partial F  statistic for testing the significance of r  additional explanatory variables 

exceeds  1. So the subset selection based on 2 ( )adjR p  can be made on the same lines are in 2.pR   In general, 

the value of  p  corresponding to the maximum value of 2 ( )adjR p  is chosen for the subset model. 

 

3. Residual mean square 

A model is said to have a better fit if residuals are small. This is reflected in the sum of squares due to 

residuals resSS .  A  model with smaller resSS  is preferable. Based on this,  the residual mean square  based on 

a p  variable subset regression model is defined as 

 
( )

( ) .res
res

SS p
MS p

n p



 

So ( )resMS p  can be used as a criterion for model selection like resSS . The ( )resSS p  decreases with an 

increase in p .  So similarly as p  increases, ( )resMS p  initially decreases, then stabilizes and finally may 

increase if the model is not sufficient to compensate the loss of one degree of freedom in the factor ( ).n p   

When ( )resMS p  is plotted versus p , the curve looks like as in the following figure. 



Regression Analysis  |  Chapter 13  |  Variable Selection and Model Building  |  Shalabh, IIT Kanpur 
 111111

 

So 

 plot ( )resMS p  versus p. 

 Choose p  corresponding to the minimum value of ( )resMS p . 

 Choose p  corresponding to which ( )resMS p  is approximately equal to resMS  based on the full 

model. 

 Choose p  near the point where the smallest value of ( )resMS p  turns upward. 

 

Such minimum value of ( )resMS p  will produce a 2 ( )adjR p  with maximum value. So 

 

2 21
( ) 1 (1 )

( )1
 1 .

( )1
 1 .

( )
 1 .

/( 1)

adj p

res

T

res

T

res

T

n
R p R

n p

SS pn

n p SS

SS pn

SS n p

MS p

SS n


  




 



 



 


 

Thus the two criteria, viz, minimum ( )resMS p  and maximum 2 ( )adjR p  are equivalent. 

 

4. Mallow’s Cp statistics:  

Mallow’s pC  criterion is based on the mean squared error of a fitted value. 

Consider the model y X     with partitioned 1 2( , )X X X  where 1X  is n p  matrix and 2X  is n q  

matrix, so that  

 2
1 1 2 2 , ( ) 0, ( )y X X E V I           

where  ' '
1 2( , ) '.    
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Consider the reduced model 

 2
1 1 , ( ) 0, ( )y X E V I         

and predict y  based on the subset model as 

 ' 1 '
1 1 1 1 1 1

ˆ ˆˆ , where ( ) .y X X X X y     

 

The prediction of  y  can also be seen  as the estimation of  ( )E y X  , so the  expected outweighed 

squared error  loss    of ŷ  is given by 

     1 1 1 1
ˆ ˆ' .p E X X X X          

So the subset model can be considered as an appropriate model if  p  is small. 

 

Since ' 1 '
1 1 1 1 1( ) ,H X X X X  so 

 1 1( ' ) 2 ' ' ' 'p E y H y X H X X X        

where   1 1( ' ) ( ) ' ( )E y H y E X H X       

                           

 1 1 1 1

2
1 1

2
1

' ' ' ' ' '

' ' 0 0

' ' .

E X H X X H H X H

X H X tr H

X H X p

       

  

  

   

   

 

 

Thus 

 

2
1 1 1

2
1

2
1

2
1

' ' 2 ' ' ' '

' ' ' '

' '( )

' '

p p X H X X H X X X

p X X X H X

p X I H X

p X H X

      

    

  

  

    

  

  

 

 

where   ' 1 '
1 1 1 1 1( ) .H I X X X X   

 

Since  

             

 1 1

2
1 1

2
1

2
1 1

( ' ) ( ) ' ( )

                ' '

                ( ) ' '

' ' ( ' ) ( )

E y H y E X H X

trH X H X

n p X H X

X H X E y H y n p

   

  

  

  

  

 

  

   
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Thus 

 2
1(2 ) ( ' ).p p n E y H y     

Note that  p  depends on   and  2  which are unknown. So p  can not be used in practice. A solution to 

this problem is to replace   and  2  by their respective estimators which gives  

 2ˆ ˆ (2 ) ( )p resp n SS p    . 

where 1( ) 'resSS p y H y  is the residuals sum of squares  based on the subset model. 

A rescaled vision of  ˆ
p  is 

 
2

( )
(2 )

ˆ
res

p

SS p
C p n


    

which  is the Mallow’s pC  statistic for the model  1 1 ,y X     the subset model.  Usually 

 

1

2

( ' ) '

1 ˆ ˆˆ ( ) '( )

b X X X y

y X y X
n p q

  



  
 

 

are used to estimate   and  2  respectively, which are based on the full model. 

 

When different subset models are considered, then the models with smallest pC  are considered to be better 

than those models with higher  .pC   So lower pC  is preferable. 

 

If the subset model has a negligible bias, (in case of  b , then bias is zero), then  

   2( ) ( )resE SS p n p    

and 

 
2

2

( )
| 0 2 .p

n p
E C Bias p n p



        

The plot of pC  versus p  for each regression equation will be a straight line passing through the origin and 

look like as follows: 
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Those points which have smaller bias will be near to line, and those points with significant bias will lie 

above the line. For example, the point A  has little bias, so it is closer to line A  whereas points B  and  C  

have a substantial  bias, so they are above the line. Moreover, the point C  is above point A , and it represents 

a model with a lower total error. It may be preferred to accept some bias in the regression equation to reduce 

the average prediction error. 

 

Note that an unbiased estimator of  2  is used in pC p  which is based on the assumption that the full 

model has a negligible bias.  In case, the full model contains non-significant explanatory variables with zero 

regression coefficients, then the same unbiased estimator of  2  will overestimate 2  and then pC  will have 

smaller values. So working of pC  depends on the good choice of the estimator of  2.  

 

5. Akaike’s information criterion (AIC) 

The Akaike’s information criterion statistic is given as 

 
( )

ln 2res
p

SS p
AIC n p

n
   
 

 

where    ' 1 '
1 1 1 1 1( ) ' ' ( )resSS p y H y y X X X X y   

is based on the subset model  1 1y X     derived from the  full model 1 1 2 2 .y X X X          

 

The AIC is defined as 

AIC =  -2(maximized log likelihood) + 2(number of parameters). 
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In the linear regression model with 2~ (0, )N I   , the likelihood function is  

 

 
2

2
2 2

1 1 ( ) '( )
( , , ) exp

2
2

n

y X y X
L y

  


     
 

and log-likelihood of 2( , , )L y   . is 

 2 2
2

1 ( ) '( )
ln ( ; , ) ln 2 ln( ) .

2 2 2

n n y X y X
L y

    


 
     

 

The log-likelihood is maximized at 

 

1

2 2

( ' ) '

ˆ

X X X y

n p

n



 









 

where   is maximum likelihood estimate of    which is same as OLSE,  2  is maximum likelihood 

estimate of  2  and  2̂  is OLSE of  2 . 

 

So 

 
 

22 ln ( ; , ) 2

ln 2 ln(2 ) 1res

AIC L y p

SS
n p n

n

 



  

     
 

 
 

where   1' ( ' ) 'resSS y I X X X X y    . 

 

The term  ln(2 ) 1n    remains the same for all the models under comparison if the same observations y  are 

compared. So it is irrelevant for AIC. 

 

6. Bayesian information criterion (BIC) 

Similar to AIC, the Bayesian information criterion is based on maximizing the posterior distribution of the 

model given the observations y .  In the case of linear regression model, it is  defined as 

 ln( ) ( ) ln .resBIC n SS k n n    

A model with a smaller  value of BIC is preferable. 
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7. PRESS statistic 

Since the residuals and residual sum of squares act as a criterion of subset model selection, so similarly, the 

PRESS  residuals and prediction sum of squares can also be used as a basis for subset model selection. The 

usual residual and PRESS  residuals have their own characteristics which use used is regression modeling. 

 

The PRESS statistic based on a subset model with p  explanatory variable is  given by 

 

2

( )
1

2

1

ˆ( )

.
1

n

i i
i

n
i

i ii

PRESS p y y

e

h





   

 
   




 

where iih  is the ith element in 1( ' ) .H X X X X  This criterion is used on similar lines as in the case of 

( ).resSS p   A subset regression model with a smaller value of ( )PRESS p  is preferable. 

 

Partial F- statistic 

The partial F  statistic is used to test the hypothesis about a subvector of the regression coefficient.  

Consider the model 

 
111 n p npn

y X  
 

   

where  1p k   which includes an intercept term and k  explanatory variables. Suppose a subset of r k  

explanatory variables is to be obtained which contribute significantly to the regression model. So partition 

 1
1 2

2

,X X X




         

 

where 1 2andX X  are matrices of order ( )n p r   and n r ,  respectively; 1  and  2  are the vectors of 

order ( 1) 1p    and 1r , respectively. 

The objective is to test the null hypothesis 

 0 2

1 2

: 0

: 0.

H

H







 

Then 

 1 1 2 2y X X X          

is the full model and application of least squares gives the OLSE of   as 

 1( ' ) ' .b X X X y  



Regression Analysis  |  Chapter 13  |  Variable Selection and Model Building  |  Shalabh, IIT Kanpur 
 171717

The corresponding sum of squares due to regression with p  degrees of freedom is 

 ' 'regSS b X y  

and the sum of squares due to residuals with  ( )n p  degrees of freedom is 

 ' ' 'resSS y y b X y   

and       
' ' '

res

y y b X y
MS

n p





 

is the mean square due to residual. 

 

The contribution of explanatory variables in  2  in the regression can be found by considering the full model 

under 0 2: 0.H     Assume that 0 2: 0H    is true, then the full model becomes 

 2
1 1 , ( ) 0, ( )y X E Var I         

which is the reduced model. Application of least squares to reduced model yields the OLSE of 1  as  

 ' 1 '
1 1 1 1( )b X X X y  

and the corresponding sum of squares due to regression with ( )p r  degrees of  freedom is  

 ' '
1 1 .regSS b X y  

 

The sum of squares of regression due to  2  given that  1  in already in the model can be found by 

 2 1 1( | ) ( ) ( )reg reg regSS SS SS      

where  ( )regSS   and 1( )regSS   are the sum of squares due to regression with all explanatory variables 

corresponding to   is the model and the explanatory variables corresponding to 1  in the model. 

 

The term 2 1( | )regSS    is called as the extra sum of squares due to 2  and has degrees of freedom. 

( ) .p p r r     It is independent of resMS  and is a measure of regression sum of squares that results from 

adding the explanatory variables  1,...,k r kX X   in the model when the model has already 1 2, ,..., k rX X X   

explanatory variables. 
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The null hypothesis 0 2: 0H    can be tested using the statistic 

 2 1
0

( | ) /res

res

SS r
F

MS

 
  

which follows  F distribution with r  and ( )n p  degrees of freedom under 0.H   The decision rule is to 

reject  0H  whenever 

 0 ( , ).F F r n p   

This is known as the partial .F  test  

 

It measures the contribution of explanatory variables in 2X  given that the other explanatory variables in  1X  

are already in the model. 

 

Computational techniques for variable selection 

In order to select a subset model, several techniques based on computational procedures and algorithm the 

available. They are essentially based on two ideas – select all possible explanatory variables or select the 

explanatory variables stepwise. 

 

1. Use all possible explanatory variables 

This methodology is based on the following steps: 

 Fit a model with one explanatory variable. 

 Fit a model with two explanatory variables. 

 Fit a model with three explanatory variables. 

and so on. 

 

Choose a suitable criterion for model selection and evaluate each of the fitted regression equation with the 

selection criterion. 

 

The total number of models to be fitted sharply rises with an increase in k .  So such models can be evaluated 

using a model selection criterion with the help of an efficient computation algorithm on computers. 
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2. Stepwise regression techniques 

This methodology is based on choosing the explanatory variables in the subset model in steps which can be 

either adding one variable at a time or deleting one variable at times. Based on this, there are three 

procedures. 

- Forward selection, 

- backward elimination and 

- stepwise regression. 

These procedures are basically computer-intensive procedures and are executed using the software. 

 

Forward selection procedure: 

This methodology assumes that there is no explanatory variable in the model except an intercept term. It 

adds variables one by one and tests the fitted model at each step using some suitable criterion. It has the 

following  steps.  

 Consider only intercept term and insert one variable at a time. 

 Calculate the simple correlations of  ' ( 1, 2,..., ) with .ix s i k y  

 Choose ix  which has the largest correlation with y . 

 Suppose 1x  is the variable which has the highest correlation with  y . Since F  statistic given by 

  
2

0 2
. ,

1 1

n k R
F

k R




 
 

      so 1x  will produce the largest value of  0F  in testing the significance of a regression. 

 Choose a prespecified value of F  value, say ( to enter)INF F   . 

 If  INF F ,  then accept 1x  and so 1x  enters into the model. 

 Adjust the effect of  1x  on y  and re-compute the correlations of remaining 'ix s  with y  and 

obtain the partial correlations as follows. 

-          Fit the regression 0 1 1
ˆ ˆŷ x    and obtain the residuals. 

-          Fit the regression of  1x  on other  candidate explanatory variables as 

  1 1
ˆ ˆˆ , 2,3,...,j oj jx x j k     

                   and  obtain the residuals. 

      -           Find the simple correlation between the two residuals. 

      -           This gives the partial correlations. 
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 Choose ix  with the second-largest correlation with y , i.e., the variable with the highest value of 

partial correlation with y . 

 Suppose this variable is  2x .  Then the largest partial F  statistic is 

2 1

1 2

( | )
.

( , )
reg

res

SS x x
F

MS x x
  

 It  INF F  then  2x  enters into the model. 

 These steps are repeated. At each step, the partial correlations are computed, and explanatory 

variable corresponding to the highest partial correlation with y  is chosen to be added into the 

model.  Equivalently, the partial F -statistics are calculated, and the largest F  statistic given the 

other explanatory variables in the model is chosen. The corresponding  explanatory variable is 

added into the model if partial F -statistic  exceeds .INF  

 Continue with such selection as long as either at a particular step, the partial F  statistic does not  

 exceed INF  or when the least explanatory variable is added to the model. 

 

Note:  The SAS software chooses INF  by choosing a type I error rate   so that the explanatory variable with 

the highest partial correlation coefficient with y  is added to the model if partial F  statistic exceeds 

F (1, )n p . 

 

Backward elimination procedure: 

This methodology is contrary to the forward selection procedure. The forward selection procedure starts with 

no explanatory variable in the model and keeps on adding one variable at a time until a suitable model is 

obtained .  

 

The backward elimination methodology begins with all explanatory variables and keeps on deleting one 

variable at a time until a suitable model is obtained. 

 

It is based on the following steps: 

 Consider all k  explanatory variables and fit the model. 

 Compute partial F  statistic for each explanatory variables as if it were the last variable to enter 

in the model. 
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 Choose a preselected value 0UTF  (F  to-remove). 

 Compare the smallest of the partial F  statistics with OUTF .  If it is less than OUTF , then remove 

the corresponding explanatory variable from the model. 

 The model will have now  ( 1)k   explanatory variables. 

 Fit the model with these ( 1)k   explanatory variables, compute the partial F  statistic for the 

new model and compare it with OUTF .  If it is less them OUTF , then remove the corresponding 

variable from the model. 

 Repeat this procedure. 

 Stop the procedure when the smallest partial F  statistic exceeds OUTF . 

 

Stepwise regression procedure: 

A combination of forward selection and backward elimination procedure is the stepwise regression.  It is a 

modification of forward selection procedure and has the following steps. 

 

 Consider all the explanatory variables entered into  the model at the previous step. 

 Add a new variable and regresses it via their partial F  statistics. 

 An explanatory variable that was added at an earlier step may now become insignificant due to its 

relationship with currently present explanatory variables in the model. 

 If partial F -statistic for an explanatory variable is smaller than OUTF , then this variable is deleted 

from the model. 

 Stepwise needs two cut-off values, INF  and OUTF  .  Sometimes IN outF F  or  IN OUTF F  are 

considered . The choice IN OUTF F  makes relatively more difficult to add an explanatory  

variable than to delete one. 

 

General comments: 

1. None of the methods among the forward  selection, backward elimination or stepwise 

regression guarantees the best subset model. 

2. The order in which the explanatory variables enter or leave the models does not indicate the 

order of importance of the explanatory variable. 
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3. In forward selection, no explanatory variable can be removed if entered in the model.  

Similarly in backward elimination, no explanatory variable can be added if removed from the 

model. 

4. All procedures may lead to different models. 

5. Different model selection criterion may give different subset models. 

 

Comments about stopping rules: 

 Choice of  INF  and/or  OUTF  provides stopping rules for algorithms. 

 Some computer software allows the analyst to specify these values directly. 

 Some algorithms require type I errors to generate INF  or/and   OUTF . Sometimes, taking   as the 

level of significance can be misleading because several correlated partial F variables are 

considered at each step, and maximum among them is examined. 

 Some analyst prefer small values of INF  and OUTF  whereas some prefer extreme values. A 

popular choice is  4IN OUTF F   which is corresponding to 5% level of significance of 

F distribution. 


