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Chapter 14 

Logistic Regression Models 

 

In the linear regression model X   , there are two types of variables – explanatory variables 1 2, ,.., kX X X  

and study variable y .  These variables can be measured on a continuous scale as well as like an indicator 

variable.  When the explanatory variables are qualitative, then their values are expressed as indicator 

variables, and then dummy variable models are used. 

 

When the study variable is a qualitative variable, then its values can be expressed using an indicator variable 

taking only two possible values 0 and 1. In such a case, the logistic regression is used. For example, y  can 

denotes the values like success or failure, yes or no, like or dislike, which can be denoted by two values 0 

and 1. 

 

Consider the model 
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where    '
1 2 0 1 21, , ,..., , ' , , ,...,i i i ik kx x x x       . 

 

The study variable takes two values as 0iy   or 1. Assume that iy  follows a Bernoulli distribution with a 

parameter ,i  so its probability distribution is  
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Assuming  ( ) 0,iE    

 ( ) 1. 0.(1 ) .i i i iE y        

From the model ' ,i i iy x     we have 
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Thus response function ( )iE y  is simply the probability that 1.iy   
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Note that ' ,i i iy x    so  

- when '1, then 1i i iy x     

- '0, then .i i iy x     

Recall that earlier i  was assumed to follow a normal distribution when y  was not an indicator variable. 

When y  is an indicator variable, then i  takes only two values, so it cannot be assumed to follow a normal 

distribution. 

 

In the usual regression model, the errors are homoskedastic, i.e., 2( )iVar    and so 2( )iVar y  . When y  

is an indicator variable, then 
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Thus ( )iVar y  depends on iy  and is a function mean of iy . Moreover, since ( )i iE y   and i  is the 

probability, so 0 1i   and thus there is a constraint on ( )iE y  that 0 ( ) 1.iE y   This puts a big constraint 

on the choice of the linear response function. One cannot fit a model in which the predicted values lie outside 

the interval of 0 and 1. 

 

When y  is a dichotomous variable, then empirical pieces of evidence suggest that the function ( )E y  on the 

whole real line that can be mapped to [0,1]  has the sigmoid shape. It is a nonlinear S  shape like  
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A natural choice for ( )E y  would be the cumulative distribution function of a random variable. In particular, 

the logistic distribution, whose cumulative distribution function is the simplified logistic function yields a 

good link and is given by 
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Linear predictor and link functions: 

The systematic component in E(y) is the linear predictor and is denoted as  

 ' , 1, 2,..., , 0,1,2,..., .i j ij i
j

x x i n j k       

The link function in generalized linear model relates the linear predictor i  to the mean response i . 

 

Thus 
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In the usual linear models based on the normally distributed study variable, the link ( )i ig    is used and is 

called an identity link. A link function maps the range of i  onto the whole real line, provides good 

empirical approximation and carries meaningful interpretations in real applications. 

 

In the case of logistic regression, the link function is defined as 

 ln .
1







 

This transformation is called as the logit transformation of probability   and 
1




 is called as odds. The 

link   is also called as log-odds. This link function is obtained as follows: 
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Note: Similar to logit function, there are other functions also which have the same shape as of logistic 

function. These functions can also be transformed through  . There are two such popular functions – probit 

transformation and complementary log-log transformation. The probit transformation is based on the 

transformation of   using the cumulative distribution function of normal distribution and based on this is the 

probit regression model. 

 

The complementary log-log transformation of   is   ln ln(1 )  . 

 

Maximum likelihood estimation of parameters: 

Consider the general form of the logistic regression model 

 ( )i i iy E y    

where 'iy s  are independent Bernoulli random variable with a parameter i  with 
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The probability density function of iy  is  
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The likelihood function is 
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so 
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Suppose repeated observations are available at each level of the x -variables. Let iy  be the numbers of 1’s 

observed for thi  observation and in  be the number of trials at each observation. Then 
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The maximum likelihood estimate ̂  of   is obtained by the numerical maximization. 

 

If ( ) ,V     then asymptotically  
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After obtaining ̂ , the linear predictor is estimated by 

 'ˆ .i ix   

The fitted value is  
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Interpretation of parameters: 

To understand the interpretation of the related ' s  in the logistic regression model, first, consider a simple 

case with only one variable as 

 0 1( ) .x x     

After fitting of the model, 0 1
ˆ ˆand   are obtained as the estimators of 0 1and   respectively. Then the 

fitted linear predictor at ix x  is 

 0 1
ˆ ˆˆ( )i ix x     

which is the log-odds at .ix x  The fitted value at 1ix x   is  

 0 1
ˆ ˆˆ( 1) ( 1)i ix x       

which is the log-odds at 1.ix x   
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This is termed as odd ratio, which is the estimated increase in the probability of success when the value of 

explanatory variable changes by one unit. 

 

When there are more than one explanatory variables in the model, then the interpretation of 'j s  is similar 

as in the case of a single explanatory variable case. The odds ratio is exp ˆ( )j  associated with explanatory 

variable jx  keeping other explanatory variables constant. This is similar to the interpretation of j  in 

multiple linear regression model. 

 

If there is a m  unit change is the explanatory variable, then the estimated increase in odds ratio is exp ˆ( ).jm  

 

 



Regression Analysis  |  Chapter 14  |  Logistic Regression Models  |   Shalabh, IIT Kanpur 
 777

Test of hypothesis: 

The test of hypothesis for the parameters in the logistic regression model is based on asymptotic theory. It is 

a large sample test based on the likelihood ratio test based on a statistic termed as deviance.  

 

A model with exactly p parameters that perfectly fit the sample data is termed as a saturated model. 

 

The statistic that compares the log-likelihoods of fitted and saturated models is called as model deviance. It 

is defined as 

 ˆ( ) 2 ln (saturated model) 2 ln ( )L L      

where  ln ( )L   is the log-likelihood and ̂  is the maximum likelihood estimate of  . 

 

In the case of the logistic regression model, 0iy   or 1 and i ’s are completely unrestricted. So the 

likelihood will be maximum at i iy   , and the maximum value of L (saturated modal) is  
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Let ̂  be the maximum likelihood estimator of  , then log-likelihood is maximum at ˆ  , and  
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Assuming that the logistic regression function is correct, the large sample distribution of likelihood ratio test 

statistic ( )   is approximately distributed as 2 ( )n p  , when n  is large. 

 

A large value of ( )   implies the model is incorrect. A small value of ( )   implies that the model is well 

fitted and is as good as the saturated model. Note that generally, the fitted model will be having a smaller 

number of parameters than the saturated model that is based on all the parameters. Thus at %  level of 

significance. 

   


