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Chapter 4 

Model Adequacy Checking 

 

The fitting of the linear regression model, estimation of parameters testing of hypothesis properties of the 

estimator, is based on the following major assumptions: 

1. The relationship between the study variable and explanatory variables is linear,  at least approximately. 

2. The error term has zero mean. 

3. The error term has a constant variance. 

4. The errors are uncorrelated. 

5. The errors are normally distributed. 

 

The validity of these assumptions is needed for the results to be meaningful. If these assumptions are violated, 

the result can be incorrect and may have serious consequences. If these departures are small, the final result 

may not be changed significantly. But if the deviations are large, the model obtained may become unstable in 

the sense that a different sample could lead to an entirely different model with opposite conclusions. So such 

underlying assumptions have to be verified before attempting to regression modeling. Such information is not 

available from the summary statistic such as t-statistic,  F-statistic or coefficient of determination. 

 

One crucial point to keep in mind is that these assumptions are for the population, and we work only with a 

sample. So the main issue is to make a decision about the population on the basis of a sample of data. 

 

Several diagnostic methods to check the violation of regression assumption are based on the study of model 

residuals with the help of various types of graphics. 

 

Checking of the linear relationship between study and explanatory variables   

1. Case of one explanatory variable 

If there is only one explanatory variable in the model, then it is easy to check the existence of the linear 

relationship between  y  and X  by scatter diagram of the available data. 

 

If the scatter diagram shows a linear trend, it indicates that the relationship between  y   and X  is linear. If the 

pattern is not linear, then it suggests that the relationship between y  and X  is nonlinear. For example, the 

following figure  indicates a linear trend 
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whereas the following graph suggests a nonlinear trend: 

 

 

2. Case of more than one explanatory variables 

To check the assumption of linearity between the study variable and the explanatory variables, the scatter plot 

matrix of the data can be used. A scatterplot matrix is a two-dimensional array of two-dimension plots where 

each form contains a scatter diagram except for the diagonal. Thus, each scenario sheds some light on the 

relationship between a pair of variables. It gives more information than the correlation coefficient between 

each pair of variables because it provides a sense of linearity or nonlinearity of the relationship and some 

awareness of how the individual data points are arranged over the region. It is a scatter diagram of 

1( versus ),y X  2( versus ),y X …, ( versus )ky X . 
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Another option to present the scatterplot is  

- display the scatterplots in the upper triangular part of the plot matrix. 

- Mention the corresponding correlation coefficients in the lower triangular part of the matrix. 

 

Suppose there are only two explanatory variables and the model is 1 1 2 2 ,y X X      then the scatterplot 

matrix looks like as follows. 

 

Such an arrangement helps in examining of plot and corresponding correlation coefficient together. The 

pairwise correlation coefficient should always be interpreted in conjunction with the corresponding scatter 

plots because  

- the correlation coefficient measures only the linear relationship and  

- the correlation coefficient is non-robust, i.e., one or two observations can substantially influence its 

value in the data. 

The presence of linear patterns is reassuring, but the absence of such patterns does not imply that the linear 

model is incorrect.  Most of the statistical software provides the option for creating the scatterplot matrix. The 

view of all the plots indicates that a multiple linear regression model may provide a reasonable fit to the data. 
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It is to be kept in mind that we get only the information on pairs of  variables through the scatterplot of  

1( versus ),y X  2( versus ),y X …, ( versus )ky X  whereas the assumption of linearity is between y  and jointly 

with ( 1 2, ,.., ).kX X X   

 
If some of the explanatory variables are themselves interrelated, then these scatter diagrams can be misleading. 

Some other methods of sorting out the relationships between several explanatory variables and a study 

variable are used.  

 
Residual analysis 

The residual is defined as the difference between the observed and fitted value of study variable. The thi  

residual is defined as 

 ˆ ˆ~ , 1,2,...,i i i i ie y y y y i n     

where iy  is an observation and  ˆiy  is the corresponding fitted value. 

 

Residual can be viewed as the deviation between the data and the fit. So it is also a measure of the variability 

in the response variable that is not explained by the regression model. 

 

Residuals can be thought of as the observed values of the model errors. So it can be expected that if there is 

any departure from the assumptions on random errors, then it should be shown up by the residual. The analysis 

of residuals help in finding the model inadequacies. 

 

Assuming that the OLSE estimates the regression coefficients in the model y X   , we find that: 

 Residuals have zero mean as 
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 An approximate average variance of residuals is estimated by 
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 Residuals are not independent as the n  residuals have only n k  degrees of freedom. The 

nonindependence  of the residuals has little effect on their use for model adequacy checking as long 

as n  is not  small  relative to .k  
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Methods for scaling residuals 

Sometimes it is easier to work with scaled residuals. We discuss four ways for scaling the residuals. 

 

1. Standardized residuals:   

The residuals are standardized based on the concept of residual minus its mean and divided by its standard 

deviation. Since ( ) 0iE e   and er sMS   estimates the approximate average variance,  so logically the scaling of 

residual is  
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So a large value of ( 3,id   say) potentially indicates an outlier. 

 

2.  Studentized residuals 

The standardized residuals use the approximate variance of  ie  as er sMS .  The studentized residuals use the 

exact variance of  ie . 

 

We first find the variance of  ie . 

In the model y X    , the OLSE of  is 1( ' ) 'b X X X y   and the residual vector is  
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Thus e Hy H  , so the residuals are the same linear transformation of  y  and  . 
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The covariance matrix of residuals is 

2

2
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and 2( ) .V I   

The matrix ( )I H  is symmetric and idempotent but generally not diagonal. So residuals have different 

variances, and they are correlated. 

 
If  iih  is the thi  diagonal element of hat matrix H  and  ijh  is the ( , )thi j  element of H ,  then 
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Since 0 1,iih   so if  resMS  is used to estimate the ( )iVar e  then 
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Now we discuss that  iih  is a measure of location of the thi  point in x-space. 

 
Regression variable hull (RVH):   

It is the smallest convex set containing  all the original data 1 2( , ,..., ), 1, 2,..., .i i i ikx x x x i n   

The iih  depend on the Euclidian distance of  ix  from the centroid and on the density of the points in RVH. 

 
In general, if a point has the largest value of  iih , say  max ,h  then it will lie on the boundary of the RVH in a 

region of the x -space. In such a region, where the density of the observations is relatively low. The set of 

points x  (not necessarily the data points used to fit the model) that satisfy 

 1
max'( ' )x X X x h   

is an ellipsoid enclosing all points inside the RVH. So the location of  a point, say, 0 01 02 0( , ,..., ),kx x x x  

relative to RVH is rejected by 

 ' 1
00 0 0( ' )h x X X x . 

Points for which 00 maxh h  are outside the ellipsoid containing RVH.  If  00 maxh h  then the point is inside the 

RVH.  Generally, a smaller the value of  00h  indicates that the point 0x  lies closer to the centroid of the x -

space. 
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Since iih  is a measure of location of the thi  point in x -space, the variance of  ie  depends on where the point 

ix  lies.  If iih  is small, then ( )iVar e   is larger, which indicates a  poorer fit. So the points near the centre of the 

x -space have poorer least-squares fit than the residuals at more remote locations. Violation of model 

assumptions are more likely at distant points, and these violations may be hard to detect from the inspection of 

ordinary residuals ie  (or the standardized residuals id )  because their residuals will usually be smaller. 

 
So a logical procedure is to examine the studentized residuals of the form 
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in place of  ie  (or id ). For  ir , 
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regardless of the location of ix  when the form of the model is correct. 

 
In many situations, the variance of residuals stabilizes (particularly in large data sets), and there may be little 

difference between id  and ir .   In such cases id  and ir   often convey equivalent information. 

 
However, since any point with a  

- large residual and 

- large iih  

is potentially highly influential on the least-squares fit, so examination of  ir  is generally recommended. 

 
If there is only one explanatory variable then 
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. 

 When ix  is close to the midpoint of x -data, i.e., ix x  is small then estimated standard deviation 

of ie  is large. 

 Conversely, when ix  is near the extreme ends of the range of x -data, then ix x  is large and 

estimated standard deviation of  ie  is small. 

 When n  is really large, the effect of 2( )ix x  is relatively small. So in big data sets, ir  may not 

differ dramatically from  id . 
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PRESS residuals: 

The PRESS residuals are defined as ( )ˆ( )i iy y  where ( )ˆ iy  is the fitted value of the thi  response based of all the 

observation except the thi  one. 

Reason:  If  iy  is really unusual, then the regression model based on all the observations may be overly 

influenced by this observation. This could produce a ˆiy  that is very similar to iy   and consequently ie  will be 

small.  So it will be challenging to detect any outlier. 

 

If  iy  is deleted, then  ( )ˆ iy  cannot be influenced by that observation, so the resulting residual should be likely 

to indicate the presence of the outlier. 

 
Procedure 

 Delete the thi  observation, 

 Fit the regression model to remaining ( 1)n   observations, 

 Calculate the predicted value of iy  corresponding to the deleted observation. 

 The corresponding prediction error ( ) ( )i i ie y y   

 Calculate ( )ie  for each  1, 2,...,i n . 

 

These prediction errors are called PRESS residuals because they are used in computing the prediction error 

sum of squares. They are also called as deleted residuals. 

Now we establish a relationship between ie  and ( )ie . 

 

Relation between ie  and ( )ie  

Let  ( )ib  be the vector of regression coefficients estimated by withholding the thi  observations. Then 

   1' '
( ) ( ) ( ) ( ) ( )i i i i ib X X X y


  

where ( )iX  is the X -matrix without the vector of  thi  observation and  ( )iy  is the y -vector without the thi  

observation.  Then 
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We use the following result in further analysis. 

 

Result:  If  'X X  is a k k  matrix and x  be its thi  row vector then  ( ' ' )X X x x  denotes the 'X X matrix 

with the thi  row withheld. Then 

  
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Using this result, we can write 
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Using ' '
( ) ( )' (as is 1  vector)i i i i iX y X y x y x k   , we can write 
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Looking at the relationship between ie  and ( )ie , it is clear that calculating the PRESS residuals does not 

require fitting in different regressions. The ( ) 'ie s  are just the ordinary residuals weighted according to the 

diagonal elements iih  of  H .  It is possible to calculate the PRESS residuals from the residuals of a single 

least-squares fit to all n  observations.  

 

 Residuals associated with points for which iih  is large will have large  PRESS residuals. Such points will 

generally be high influence points. 

 

The large difference between ordinary residual and PRESS residuals indicate a point where the model fits the 

data well, and a model without that point predicts poorly. 

 

Now 
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The standardized PRESS residual is 
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which is same as the Studentized residuals. 

 

4. R-student 

The studentized residual ir  is often considered as an outlier diagnostic and er sMS  is used as an estimate of 2  

in computing ir . This is referred  to as internal scaling of the  residuals because er sMS  is an internally 

generated estimate of  2  obtained from the fitting the model to all n  observation . 
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Another approach is to use an estimate of  2   based on a data set with  thi  observation removed, say  2
( ).is  

 

First, we derive an expression for 2
( )is .  Using the identity 
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Post multiply both sides by '( ' ),i iX y x y  we get 
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Now consider 
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Thus 
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This estimate of  2  is used instead of er sMS  to produce an externally studentized residual, usually called 

R-student given by 
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In many situations, it  will differ little with ir . However, if the  thi   observation is influential, then 2
( )is  can 

differ significantly from  er sMS  and the R  student statistic will be more sensitive to this point. 

 
Under the usual regression assumption,  t  follows a t -distribution with ( 1)n k   degrees of freedom. 

 

Residual plots 

The graphical analysis of residuals is a very effective way to investigate the adequacy of the fit of a regression 

model and to check the underlying assumptions. Various types of graphics can be examined for different 

assumptions, and these graphics are generated by regression software. It is better to plot the original residuals 

as well as scaled residuals. Typically, the studentized residuals are plotted as they have constant variance. 

 

Normal probability plot 

The assumption of normality of disturbances is very much needed for the validity of the results for testing of 

hypothesis, confidence intervals and prediction intervals. Small departures from normality may not affect the 

model significantly, but gross nonnormality is more dangerous. The normal probability plots help in verifying 

the assumption of normal distribution.  If errors are coming from a distribution with thicker and heavier tails 

than normal, then the least-squares fit may be sensitive to a small set of data. Heavy tailed error distribution 

often generates outliers that “pull” the least-squares too much in their direction.  In such cases, other 

estimation techniques like robust regression methods should be considered. 

 

The normal probability plots is a plot of the ordered standardized residuals versus the so-called normal 

scores. The normal scores  are the cumulative probability 

 

1
2

, 1, 2,..., .i

i
P i n

n

  
    



Regression Analysis  |  Chapter 4  |  Model Adequacy Checking  |  Shalabh, IIT Kanpur 
 131313

If the residuals 1 2, ,..., ne e e  are ordered and ranked in increasing order as 

 [1] [2] [ ]... ne e e   , 

then the [ ] 'ie s  are plotted against iP  and the plot is called normal probability plot.  If the residuals are 

normally distributed, then the ordered residuals should be approximately the same as the ordered normal 

scores. So the resulting points should lie around the straight line with an intercept zero and a  slope of one 

(these are the mean and standard distributions of standardized residuals). 

The rationales behind  plotting [ ]ie  against 

1
2

i

i
P

n

  
   is as follows: 

 Divide the whole unit area under the normal curve into n  equal areas. 

 We have a sample of size n  data sets. 

 We might “except” that one observations lies is each section, so marked out. 

 The first section has one point, so the cumulative probability is P1 = 1/n. Second section has one 

point, so cumulative probability up to second section is P2 = (1/n ) + (1/n) = 2/n and so on. 

 Then thi  ordered residual observation is plotted against the cumulative area to the middle of thi   

section, which is 

1
2

i

n

  
  . 

 The factor ½ is used for end correction as all the observations scattered inside the stripe are 

assumed to be concentrated at the midpoint of the stripe.  
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Different software uses a different criterion. For example, BMDP uses 

 

1
3
1
3

i

i
P

n





 

which produces detrended normal probability plots from which slope is removed. 

Minitab uses 

3
8
1
4

i

i
P

n





 and converts to a normal score. 

Such differences are not crucial in real use. 

 

The straight line is usually determined visually with emphasis on the central values rather than the extremes. A 

substantial departure from a straight line indicates that the distribution is not normal. 

 

Sometimes the normal probability plots are constructed by plotting the ranked residuals [ ]ie  against the 

expected normal value 1

1
2

i

n


      
 
  

 where    denotes the standard normal cumulative distribution. This 

follows from the fact that 

 1
[ ]

1
2

i

i
E e

n


            
  

. 

Various interpretations of the graphic patterns are as follows. 
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(a) This figure has an ideal normal probability plot. Points lie approximately on the straight line and 

indicate that the underlying distribution is normal. 

   

 

 

(b) This figure has sharp upward and downward curves at both extremes. This indicates that the 

underlying distribution is heavy-tailed, i.e., the tails of the underlying distribution are thicker than the 

tails of normal distribution.  

 

   

e[i]i

0.5

1

0

i

 e[i]

 

1 

0 

0.5

Cumulative 
probability 

Cumulative
probability 
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(c) This figure has flattening at the extremes for the curves. This indicates that the underlying distribution 

is light-tailed, i.e., the tails of the underlying distribution are thinner than the tails of normal 

distribution. 

     

(d) This figure has a sharp change in the direction of the trend in an upward direction from the mid. This 

indicates that the underlying distribution is positively skewed.  

 
 

 

 

0.5

1 

0 e[i]

 

e[i]

1

0

0.5 

Cumulative
probability 

Cumulative
probability 
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(e) This figure has a sharp change in the direction of the trend in the downward direction from the mid. 

This indicates that the underlying distribution is negatively skewed.  

   
Some experience and expertise are required to interpret the normal probability plots because the samples taken 

from a normal distribution will not plot precisely as a straight line. 

 Small sample sizes ( 16)n   often produce normal probability plots that deviate substantially from 

linearity. 

 Larger sample sizes ( 32)n   produce plots which are much better behaved. 

 Usually, about 2n  0  is required to produce stable and easily interpretable normal probability 

plots. 

 If residuals are not from a random sample, normal probability plots often exhibit no unusual 

behaviour even if the disturbances ( )i  are not normally distributed. Such residuals are often 

remnants of a parametric estimation process and are linear combinations of the model errors ( i ). 

 Thus fitting the parameters tends to destroy the evidence of nonnormality in the residuals. 

Consequently, we can not rely on the normal probability plots to detect the departures from 

normality. 

 Commonly seen defect found is normal probability plots is the occurrence of one or two large 

residuals. Sometimes, this is an indication that the corresponding observations are outliers. 

e[i]

0.5 

1 

0 

Cumulative
probability 
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Plots of residuals against the fitted value 

A plot of residuals ( )ie  or any of the scaled residuals ( , or  i i id r t )  versus the corresponding fitted values ˆiy  is 

helpful in detecting several common types of model inadequacies.  Following types of plots of  ˆiy   versus  ie  

have particular interpretations:  

(a) If the plot is such that the residuals can be contained in a horizontal band fashion (and residual 

fluctuates more or less in a random manner inside the band), then there are no visible model defects.  

  
(b) It plot is such that the residuals can be contained in an outward opening funnel then such pattern 

indicates that the variance of errors is not constant, but it is an increasing function of  .y  
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(c) If plots are such that the residuals can be accommodated in an inward opening funnel,  then such a 

pattern indicates that the variance of errors is not constant, but it is a decreasing function of y. 

 

     

 

(d) If the plot is such that the residuals can be accommodated inside a double bow, then such a pattern 

indicates that the variance of errors is not constant but y  is a proportion between 0 and 1. The  y then 

may have a Binomial distribution. The variance of a Binomial proportion near 0.5 is higher as 

compared to near-zero or 1.  So the assumed relationship between  y  and 'X s  is nonlinear. 

  
The usual approach to deal with such inequality of variances is to apply a suitable transformation to 

either the explanatory variables or the study variable or use the method of weighted least squares. In 

practice, transformations on study variable are generally employed to stabilize the variance. 
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(e) If the plot is such that the residuals are contained inside a curved plot, then it indicates nonlinearity. 

The assumed relationship between y  and 'X s  is non-linear. This could also mean that some other 

explanatory variables are needed in the model. For example, a squared error term may be necessary.  

Transformations on explanatory variables and/or study variable may also be helpful in these cases. 

 

Note:  A plot of residuals against  ˆiy  may also reveal one or more unusually large residuals. These points are 

potential outliers.  Large residuals that occur at the extreme ˆiy  values could also indicate that either the 

variance is not constant or the true relationship between  y  and X  is nonlinear. These possibilities should be 

investigated before the points are considered outliers. 

 

Plots of residuals against explanatory variable 

Plotting of residuals against the corresponding values of each explanatory variable can also be helpful. 

We proceed as follows 

 Consider the residual on  axisY   and values of the thj  explanatory variable  

' , ( 1,2,..., ) on axisijx s i n X  . This is the same way as we have plotted the residuals against  ˆ .iy   

In place of  ˆ ' ,iy s  now we consider 'ijx s . 

 Interpretation of the plots is the same as in the case of plots of residuals versus ˆiy .  This is as 

follows.  If all the residuals are contained in   

- a horizontal band, and the residuals fluctuate more or less in a random fashion within this band, 

then it is desirable, and there are no visible model defects. 

- an outward opening funnel shape or inward opening funnel shape, then it indicates that the 

variance is nonconstant. 
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- a double bow pattern or nonlinear pattern then it indicates the assumed relationship between y  

and jx  is not correct. The possibilities like y  may be a proportion, a higher-ordered  term is 

jX  (e.g. 2 )jX  are needed, or a transformation is required to be considered in such a case.  

 

Note 1: In the case of simple linear regression, it is not necessary to plot residuals versus ˆiy  and explanatory 

variable. The reason is that the fitted values  ˆiy  are linear combinations of the  values of the explanatory 

variable iX , so the plots would only differ is the scale for the abscissa ( axis).X   

 

Note 2: It is also helpful to plot the residuals against explanatory variables that are not currently is the model, 

but which could potentially be included. Any structure in the plot of residuals versus an omitted variable 

indicates that incorporation of that variable could improve the model. 

 

Note 3:  Plotting residuals versus explanatory variable is not always the most effective way to reveal whether 

a curvature effect (or a  transformation) is required for that variable in the model.  Partial regression plots are 

more effective in investigating the relationship between the study variable and explanatory variables. 

 

Plots of residuals in time sequence 

If the time sequence in which the data were collected is known, then the residuals can be plotted against the 

time order. We proceed as follows: 

 Consider the residuals on Y -axis and time order on axisX  . This is the same way as we have plotted 

the residuals against ˆ .iy   In place of ˆiy , just use the time order. 

 Interpretation of the plots is the same as in the case of plots of residuals versus ˆiy .  This is as follows. 

 

If all the residuals are contained in  

- a horizontal band, and the residuals fluctuate more or less in a random fashion within this band, then it 

is desirable and indicates that there are no obvious model deflects. 

- An outward opening funnel shape or inward opening funnel shape, then it indicates that the variance is 

not constant but changing with time. 

- Double bow pattern or nonlinear pattern, then it indicates that the assumed relationship is nonlinear.             

In such a case, the linear or quadratic terms in time should be added to the model. 
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The time sequence plot of residuals may indicate that the errors at one time period are correlated with those at 

other time periods. The correlation between model errors at different time periods is called autocorrelation.  

 
If we have a plot like following, then it indicates the presence of autocorrelation. 

 
Following type of figure indicates the presence of positive autocorrelation 

Time

Residual 
(ei)

 
Following type of figure indicates the presence of negative autocorrelation 

Time

Residual 
(ei)

 

The methods to detect the autocorrelation and to deal with the time-dependent data are available under time 

series analysis. Some measures are discussed further in the module on autocorrelation. 
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Partial regression and partial residual plots 

Partial regression plot (also called as added variable plot or adjusted variable plot) is a variation of the plot 

of residuals versus the predictor.  It helps better to study the marginal relationship of an explanatory variable 

given the other variables that are in the model. A limitation of the plot of residuals versus an explanatory 

variable is that it may not completely show the correct or complete marginal effect of an explanatory variable 

given the other explanatory variables in the model. The partial regression plot helps in evaluating whether the 

relationship between study and explanatory variables is correctly specified.  They provide information about 

the marginal usefulness of a variable that is not currently in the model. 

 
In partial regression plot 

- Regress y  on all the explanatory variable except the thj   explanatory variables jX  and obtain the 

residuals  ( )/ je y X   , say where  ( )jX   denotes the X -matrix with  jX  removed. 

- Regress jX  on all other explanatory variables and obtain the residuals ( )/j je X X   , say 

- Plot both  these residuals  against ( )/ .j je X X    

These plots provide information about the nature of the marginal relationship for thj  explanatory variable jX  

under consideration. 

 
If  jX  enters into the model linearly, them the partial regression plot should show a linear relationship, i.e., 

the partial residuals will fall along a straight line with a nonzero scope. 

 
See how: 

Consider the model 

 y X    

                ( ) ( )j j j jX X      

then residual is ( )e I H   where 1 ' ' 1 '
( ) ( ) ( ) ( ) ( )( ' ) ' and ( , )j j j j jH X X X X H X X X X    is the H -matrix 

based on ( )jX .  Premultiply y X     by ( )( )jI H  and noting that  ( ) ( )( )j jI H X 0,  we have 

 
( ) ( ) ( ) ( ) ( )

( ) ( )

*
( ) ( )

( ) ( ) ( ) ( )

0 ( ) ( )

/ /

j j j j j j j

j j j j

j j j j

I H y I H X I H X I H

I H X I H

e y X e X X

  

 

 

      

    

       

 

where    *
( )( ) .jI H    
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This suggests that a partial regression plot which is a plot between ( )/ je y X    and ( )/j je X X    (like between 

y  and )X  should have a slope  j .  Thus if  jX  linearly enters the regression, the partial regression plot 

should show linear relationship passing through the origin.  For example, like 

 

If the partial regression plot shows a curvilinear band, then higher-order terms in jX  or a transformation may 

be helpful. 

 e (X1 / X2)

e (y / X2)

 
If  jX  is a candidate variable which is considered for inclusion in the model, then a horizontal band on the 

regression plot indicates that there is no additional useful information in jX  for predicting y . This indicates 

that  j  is nearly zero. 
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    e (X1 / X2)

e (y / X2)

 
Example: Consider a model 

 0 1 1 2 2y X X       . 

We want to know about the nature of marginal relationship for  1X and also want to know whether the 

relationship between y  and 1X  is correctly specified or not ?  

 

To obtain the partial regression plot. 
 Regress y  on 2X  and obtain the  fitted values and residuals 

2 0 1 2

2 2

ˆ ˆˆ ( )

ˆ( / ) ( ), 1, 2,..., .
i i

i i i

y X x

e y X y y X i n

  

  
 

 Regress 1X  on  2X  and find the residuals 

 1 2 0 1 2

1 2 1 1 2

ˆ ˆ ˆ( )

ˆ( / ) ( ), 1, 2,..., .

i i

i i i

X X x

e X X x X X i n

  

  
 

 Plot  2( / )ie y X  against the 1X  residuals 1 2( / )ie X X . 

 If  1X  enters into the model linearly, then the plot will look like as follows: 
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 The slope of this line is the regression coefficient of 1X  in the multiple linear regression model. 

                                e (X1 / X2)

e (y / X2)

 
 If the partial regression plot shows a curvilinear band, then higher-order terms in  1X  or a 

transformation 1X  may be helpful. 

 If  1X   is a candidate variable which is considered for inclusion in the model, then a horizontal 

band on the regression plot indicates that there is no additional useful information for predicting y . 

e (X1 / X2)

e (y / X2)

 
Some comments on partial regression plots: 

1. Partial regression plots need to be used with caution as they only suggest a possible relationship 

between study and explanatory variables. The plots may not give information about the proper form of 

the relationship of several variables that are already in the model are incorrectly specified.  

 
Some alternative forms of relationship between study and explanatory variables should also be 

examined with several transformations. 

 
Residual plots for these models should also be examined to identify the best relationship or 

transformation. 
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2. Partial regression plots will not, in general, detect the interaction effect among the regressors. 

3 Partial regression plots are affected by the existence of the exact relationship among explanatory 

variables (Problem of multicollinearity) and the information about the relationship between study, and 

explanatory variables may be incorrect. 

In such cases, it is better to construct a scatter plot of explanatory variables like verusi jX X . If they 

are highly correlated, multicollinearity is introduced, and properties of estimators like ordinary least 

squares of regression coefficients are disturbed. 

 

Partial residual 

A residual plot closely related to the partial regression plot in the partial residual plot. It is designed to show 

the relationship between the study and explanatory variables. 

 

Suppose the model has k  explanatory variable and we are interested in the thj  explanatory variable jX .  

Then ( )( , )j jX X X  where ( )jX  is the X  matrix with jX   removed. The model is 

( ) ( )j j j j

y X

X X

 
  

 
  

 

where  ( )j  is the vector of all  1 2, ,..., k    except j .  The fitted model is  

 ( ) ( )
ˆ ˆˆ j j j jy X X e     

or  ( ) ( )
ˆ ˆˆ j j j jy X X e     

where e  is the residual based on all k  explanatory variables. 

Then partial residual for  jX  ( 1,2,.., )j k  is given by 

 ( ) ( )
ˆ ˆˆ j j j jy X X e     

or    ˆ( / )j j je y X e X   

or    * ˆ( / ) , 1, 2,...,i j i j ije y X e x i n   . 
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Partial residuals plots 

A residual plot closely related to the partial regression plot in the partial residual plot. It is designed to show 

the relationship between the study and explanatory variables. 

 
Suppose the model has k  explanatory variables 1 2, ,..., .kX X X   The partial residuals for jX  are  defined as 

 * ˆ( / ) , 1, 2,...,i j i j ije y X e x i n    

where ie  are the residuals from the model containing all the k  explanatory variables and  ˆ
j  is the estimate of  

the thj  regression coefficient. 

When *( / )i je y X  are plotted against  ijx ,  the resulting display has a slope  ˆ
j . The interpretation of the partial 

residual plot is very similar to that of the partial regression plot. 

 
Statistical tests on residuals 

We may apply certain statistical tests to the residuals to obtain a quantitative measure of some of the model 

inadequacies.  They are not widely used. In many applications, residual plots are more informative than the 

corresponding tests.  However, some residual plots do require some skill and experience to interpret. In such 

cases, the statistical tests may prove useful. 

 

The PRESS statistic 

The PRESS residuals are defined as 

 ( ) ( )ˆ , 1, 2,...,i i ie y y i n    

where ( )ˆ iy  is the predicted value of the thi   observed study variable based on a model fit to the remaining 

( 1)n   points. The large residuals are useful in identifying those observations where the model does not fit 

well or the observations for which the model is likely to provide poor predictions for future values. 

 
The prediction sum of squares is defined as the sum of squared PRESS  residuals and is called as PRESS 

statistic as 

 
22

( )
1 1

ˆ
1

n n
i

i i
i i ii

e
PRESS y y

h 

 
        

   

 
The PRESS statistic is a measure of how well a regression model will perform in predicting new data. So this 

is also a measure of model quality. A model with a small value of PRESS is desirable. This can also be used 

for comparing regression models. 
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2R  for prediction based on PRESS 
The PRESS statistic can be used to compute an 2R -like statistic for prediction, say 

 2
prediction 1

T

PRESS
R

SS
   

where TSS  is the total sum of squares. This statistic gives some indication of the predictive capability of the 

regression model. For example, if  2 0.89R  , then it indicates that the model is expected to explain about 

89% of the variability in predicting new observations. 

 
Detection and treatment of outliers 

 An outlier is an extreme observation. 

 Residuals that are considerably larger in absolute value than the others say, 3 or 4 times of standard 

deviation from the mean indicate potential outliers in y -space. This idea is derived from the 3-sigma 

or 4-sigma limits. 

 Depending on their location, outliers can have moderate to severe effects on the regression model. 

 Outliers may indicate a model failure for these points. 

 Residual plots against ˆiy  and normal probability plots help in identifying outliers. Examination of 

scaled residuals, e.g., studentized and R-student residuals are more helpful as they have mean zero and 

variance one. 

 Outliers can also occur in explanatory variables in X -space. They can also affect the regression 

results. 

 Sometimes outliers are “bad” values occurring as a  result of unusual but explainable events. For 

example, faulty measurements, incorrect recording of data, failure of measuring instrument etc. 

 Bad values need to be discarded but should have strong nonstatistical evidence that the outlier is a  bad 

value before it is discarded. Discarding bad values is desirable because least-squares pull the fitted 

equation toward the outlier. 

 Sometimes outlier is an unusual but perfectly plausible observation. If such observations are deleted, 

then it may give a false impression of improvement in the fit of the equation. 

 Sometimes the outlier is more critical than the rest of the data because it may control many key model 

properties. 

 The effect of outliers on the regression model may be checked by dropping these points and refitting 

the regression equation. 

 The value of  t -statistic, F -statistic, 2R  and residual mean square may be sensitive to outliers. 
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An outlier test based on R-student 

A common way to model an outlier is the mean shift outlier model. 

Suppose we fit a model 

 y X    

when the true model is 

 y X       

where   is a 1n  vector of zeros except  for the thu  observation which has a value .u   Thus 

 (0,0,...,0, ,0,...,0)u   

Assume 2~ (0, )N I   for both the models we fit.  Our objective is to find an appropriate statistic for testing 

0 0: 0 verus : 0u uH H   .  This procedure assumes that we are specifically interested is thu  observation, 

i.e., that we have a priori information that the thu  observation may be an outlier. 

 

First, we find an appropriate estimate of  u .  Consider thu  residual as its estimate. The 1n  residual vector is  

   1( ' ) 'e I H y I X X X X y      . 

Then 

  

 
1

( )

       ( )

( )

  

 0

 ( ' ) .

E e Hy

HE y

H X

HX H

I H

I X X X X

 
 









 

 

  

   

 

  

Thus ( ) (1 )

ˆ
1

u uu u

u
u

uu

E e h

e

h





 

 


 

is an unbiased estimator of u  where uuh  is the thu  diagonal element of  .H  

It may be observed that  û  is simply the thu  PRESS residual. Further, the covariance matrix of  e  is 

 

2

2

( ) ( )

( ) ( )( )

( )

( ) (1 ) .u uu

V e V I H y

I H V y I H

I H

Var e h





 

  

 

 
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So 

2

2

2

ˆ( )
1

(1 )
             

(1 )

  .
1

u
u

uu

uu

uu

uu

e
Var Var

h

h

h

h







 
   









 

Also e  is a linear combination of normally distributed y .  So e  is also normally distributed. Thus  û  is also  

normally distributed. 

Consequently, under 0 : 0uH   ,  

 
1

~ (0,1).
1

1

u

uu u

uu

uu

e

h e
N

h

h



 
   
  
   

 

The quantity  
1

u

uu

e

h 
 is simply an example of studentized residual. Since  2  is unknown and  e

2
r sMS


 is a 

Chi-square  random variable, so a candidate test statistic is  

  
e (1 )

u

r s uu

e

MS h
 

which follows a t-distribution if   e I H y  and  e '( )r sSS y I H y   are independent. Since 

    2 2 ( ) 0I H I I H I H      , 

so e  and  er sSS  are not actually independent. 

 

We already have developed 2
(1)S  which is related to the residual mean square in a regression model with thi  

observation withheld given by 

 

2

e
2
( )

( )
1

.
1

i
r s

ii
i

e
n k MS

h
S

n k

 



 

 

This estimate of  2  is independent of  ue  by the basic independence assumption on random errors.   So 2  

can be replaced by  2
( )us  and an appropriate test statistic for the mean shift outlier model is  

 
( ) 1

u

u uu

e

s h
 

which is the  externally studentized residual or R -student. 
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 

0

( )

0

( )

Under : 0,     ~ ( 1)
1

and under : 0,     ~ noncentral ( 1,
1

u
u

u uu

u
u

u uu

e
H t n k

s h

e
H t n k

s h



 

  


  


 

with noncentrality parameter 

 
1

/( 1 )
i uuu

uu

h

h





 


. 

Note that the power of this test depends on uuh .  If we fit an intercept to our model, then 
1

1uuh
n
  .  So 

maximum power occurs when 
1

uuh
n

 , i.e., at the center of the data cloud is terms of the ' .X s   As  1uuh  , 

the power goes to 0.  In other words, this test has less ability to detect outliers at the high leverage data points 

(Note that the concept of leverage point is discussed in later sections). 

 

Test for lack of fit of a regression model 

This test for lack of fit of a regression model is based on the assumptions of normality, independence and 

constant variance which are satisfied. Only the first order or straight-line character of the relationship is in 

doubt. For example, the data in the following scatter plot where the indication is there that straight line fit is 

not very satisfactory.   
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The test procedure determines if there is systematic curvature is present. The test requires to replicate 

observations on y  for at least one level of  x  , and they should be true replications and not just the duplicate 

readings or measurement of  y . 

 

The true replications consist of running in  separate experiments at  ix x  and observe y .  It is not just 

running a single experiment at  ix x  and measuring y   in  times in which the information only on the 

variability of the method of measuring  y  is obtained. These replicated observations are used to get a  model-

independent estimate of  2 . 

 

Suppose we have in  observations on  y  at the thi  level of  , 1, 2,..., .ix i m   Let  ijy  be the thj  observation on 

y  at  ix , 
1

1,2,..., , 1, 2,..., ;
m

i i
i

i m j n n n


    is the total number of observations. 

Consider the model 

0 1i i iy x     . 

Let  iy  be the mean of  in  observations on ix .  Then the ( , )thi j  residual is  

 

2 2 2

1 1 1 1 1

e

ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( ) ( ) (obtained by squaring and summing over   and )

                          

                             

i i

ij i ij i i i

n nm m m

ij i ij i i i
i j i j i

r s PE

y y y y y y

y y y y n y y i j

SS SS

    

    

    

  


  

        

                          

Residual Sum of Sum of

    sum of             squares due  squares due to  

squares to pure error lack of fit

                              

                        

LOFSS

  

 

Measures Measures
                 

pure error lack of fit

 

 

If assumption of constant variance is satisfied,  then  PESS  is a model independent measure of pure error 

because only the variability of  'y s  at each x  level is used to compute PESS . 

 



Regression Analysis  |  Chapter 4  |  Model Adequacy Checking  |  Shalabh, IIT Kanpur 
 343434

Since there are ( 1)in   degrees of freedom for pure error at each level of ix , the number of degrees of freedom 

associated with 
1

is ( 1)
m

PE i
i

SS n n m


   .  LOFSS  is a weighted sum of squared deviations between iy  at each 

level of x  and corresponding fitted value. 

 

If  ˆiy  are close to  iy , then there is a strong indication that the regression function is linear. 

If   ˆiy  deviate considerably from iy  then it is likely that the regression function is not linear.  The degrees of 

freedom associated with LOFSS  is 2m   because there are m  levels of  x  and two degrees of  freedom are 

lost because  two parameters must be estimated to obtain .iy  

 

Computationally, 

 eLOF r s PESS SS SS  . 

The test statistic for lack of fit is 

 

 

0

2

0 1
2 1

/( 2)

/( )

( )
( ) .

( 2)

LOF

PE

LOF

PE

n

i i i
i

LOF

SS m
F

SS n m

MS

MS

n E y x
E MS

m

 
 








 
 





 

If true regression is linear, then 0 1( )i iE y x    and 2( ) .LOFE MS   

If true regression is nonlinear, then 0 1( )i iE y x    and  2( )LOFE MS  . 

If true regression function is linear, then 

 0 ~ ( 2, ).F F m n m   

So to test for lack of fit, compute 0F  and conclude that regression function is not linear if 

0 ( 2, )F F m n m    at    level of significance. 

 
If we conclude that regression function is not linear then the tentative model must be abandoned and  we 

attempt to  find a more appropriate model. 

 
If  0 ( 2, )F F m n m     then there is no strong evidence of lack of fit.  They PEMS  and LOFMS  are often 

combined to estimate 2 . 
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If  F  ratio for lack of fit is not significant and  0 1: 0H    is rejected, then this does not guarantee that model 

will be satisfactory for prediction. It is suggested that the F -ratio must be at least four or five times the 

( 2, )F m n m    if the regression model is to be useful for prediction. 

 
A simple measure of potential prediction performance is found by comparing the range of fitted values, i.e.,  

 max minˆ ˆy y  to their average standard error. Regardless of the term of the model, the average variance  of the 

fitted values is 

 
2_________

1

1
ˆ ˆ( ) ( )

n

i
i

k
Var y Var y

n n




   

where k  is the number of parameters is the model. 

 
In general, the model is not likely to be satisfactory predictor unless the range of  ˆiy  is large relative to the 

estimated standard error 
2ˆk

n


 where  2̂  is a  model-independent estimate of error variance. 

 
Estimation of pure error from near-neighbours: 

In test of lack of fit 

 er s PE LOFSS SS SS   

PESS  is computed using responses at repeat observations at some level of x . This is a model-independent 

estimate of  2 .  

 
This general principle can be applied to any regression model.  

 
Calculation of  PESS  requires repeat observations on the response y  at the same set of levels on the 

explanatory variables 1 2 ,, ..., ,kx x x  i.e., some of the rows of X -matrix must be same. 

In practice, repeat observations do not often occur in multiple regression, and the procedure of lack of fit is not 

often useful. 

 
A method to obtain a model-independent estimate of error when there are no exact repeat points are the 

procedures which search for those points in x -space that are near-neighbours. 

 
This is the sets of observations that have been taken with near-identical levels of  1 2, ,..., kx x x . The response  

iy  from such near-neighbours can be considered as repeat points and used to obtain an estimate of pure error. 
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As a measure of the distance between any two points,  1 2, ,..., kx x x  and '1 '2 ', ,...,i i i kx x x , use the weighted sum of 

squared distance (WSSD) 

 

2

'2
'

1 e

ˆ ( )k
j ij i j

ii
j r s

x x
D

MS





 
  

  
  

The pairs of points with small values of 2
'iiD  are “near neighbours” , i.e., they are relatively close together in 

x -space.  Pairs of points for which 2
'iiD  is large (e.g., 2

' 1)iiD    are widely separated is x -space.  The 

residuals at two points with a small value of  2
'iiD  can be used to obtain an estimate of pure error. 

The estimate is obtained from the range of residuals at the points i  and 'i ,  say 

 'i i iE e e  . 

There is a relationship between the range of a sample from a normal population and the population standard 

deviation. For example,  for sample size = 2, this relationship is  

 2 0.886
1.128

E
E   . 

The quantity  2  so obtained is an estimate of the standard deviation of pure error. 

An efficient algorithm may be used to compute this estimate as as follows: 

- First arrange the data points ,...,ii ikx x  in order of increasing ˆiy . 

- Note that points with different values of  ˆiy  cannot be near neighbour but those with similar values 

of  ˆiy  could be neighbours  (or they could be near the same contour of constant ŷ  but for apart in 

some  x -coordinates). 

Then 
1. Compute the values of  2

'iiD  for all ( 1)n   pairs of points with adjacent values of ŷ . Repeat this 

calculation for the pairs of points separated by one, two and three intermediate ŷ  values.  This will 

produce (4 10)n   values of  2
'.iiD  

2. Arrange the (4 10)n   values of 2
'iiD  found is step 1.  Let , 1, 2,..., (4 10)uE u n   be the range of the 

residuals at these points. 

3. For the first m  values of  uE  , calculate an estimate of the standard deviation of pure error as 

1

0.886
ˆ

m

u
u

E
m




  . 

Note that  ̂  is based on the average range of the residuals associated with the m  smallest values of  2
' ,iiD m  

must be chosen after inspecting the values of  2
'iiD .  One should not include values of  uE  is the calculation for 

which the weighted sum of squared distance is too large.  


