
Regression Analysis  |  Chapter 8  |  Indicator Variables |  Shalabh, IIT Kanpur 
 111

Chapter 8 

Indicator Variables 

 

In general, the explanatory variables in any regression analysis are assumed to be quantitative in nature. For 

example, the variables like temperature, distance,  age etc. are quantitative in the sense that they are recorded 

on a well-defined scale. 

 

In many applications, the variables can not be defined on a well-defined scale, and they are qualitative in 

nature. 

 

For example, the variables like sex (male or female),  colour (black, white), nationality,  employment status 

(employed, unemployed)  are defined on a nominal scale. Such variables do not have any natural scale of 

measurement. Such variables usually indicate the presence or absence of a “quality” or an attribute like 

employed or unemployed, graduate or non-graduate, smokers or non- smokers, yes or no,  acceptance or 

rejection, so they are defined on a nominal scale. Such variables can be quantified by artificially constructing 

the variables that take the values, e.g.,  1 and 0 where “1” usually indicates the presence of attribute and “0” 

usually indicates the absence of the attribute. For example, “1” indicator that the person is male and “0”  

indicates that the person is female.  Similarly, “1” may indicate that the person is employed and then “0” 

indicates that the person is unemployed. 

 

Such variables classify the data into mutually exclusive categories. These variables are called indicator 

variable or dummy variables. 

 

Usually, the indicator variables take on the values 0 and 1 to identify the mutually exclusive classes of the 

explanatory variables. For example, 

 

1 if person is male

0 if person is female,

1 if person is employed

0 if person is unemployed.

D

D


 



 


 

 

Here we use the notation D  in place of  X  to denote the dummy variable.  The choice of 1 and 0 to identify 

a category is arbitrary. For example,  one can also define the  dummy variable in the above examples as  
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1 if person is female

0 if person is male,

1 if person is unemployed

0 if person is employed.

D

D


 



 


 

It  is also not necessary to choose only 1 and 0 to denote the category. In fact, any distinct value of  D will 

serve the purpose. The choices of 1 and 0 are preferred as they make the calculations simple, help in the easy 

interpretation of the values and usually turn out to be a satisfactory choice. 

 

In a given regression model, the qualitative and quantitative can also occur together, i.e., some variables are 

qualitative, and others are quantitative. 

 

When all explanatory variables are 

- quantitative, then  the model is called a  regression model, 

- qualitative, then the model is called an  analysis of variance model and  

- quantitative and qualitative both, then the model is called an analysis of covariance model. 

 

Such models can be dealt with within the framework of regression analysis.  The usual tools of regression 

analysis can be used in the case of dummy variables. 

 

Example: 

Consider the following  model with 1x  as quantitative and 2D  as an indicator variable 

 

2
0 1 1 2 2

2

, ( ) 0, ( )

0 if an observation belongs to group

1 if an observation belongs to group .

y x D E Var

A
D

B

           


 


 

The interpretation of the result is essential. We proceed as follows: 

If  2 0,D   then   

 
0 1 1 2

0 1 1

2 0 1 1

.0

( / 0)

y x

x

E y D x

   
  

 

   
  

  

 

which is a straight line relationship with intercept 0  and slope 1 . 
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If  2 1,D   then 

 
0 1 1 2

0 2 1 1

2 0 2 1 1

.1

( )

( / 1) ( )

y x

x

E y D x

   
   

  

   

   

   

 

which  is a straight-line relationship with intercept 0 2( )   and slope 1.  

 

The quantities 2( / 0)E y D   and  2( / 1)E y D   are the average responses when an observation belongs to 

group A  and group, ,B  respectively. Thus 

 2 2 2( / 1) ( / 0)E y D E y D      

which has an interpretation as the difference between the average values of  y  with 2 20 and 1D D  . 

 

Graphically, it looks like as in the following figure. It describes two parallel regression lines with the same 

variances 2 . 

 

0 2 

y

x

0

1

1

2

2 0 2 1 1( / 1) ( )E y D x     

2 0 1 1( / 0)E y D x   

 

If  there  are three explanatory variables in the model with two indicator variables  2D  , and 3D  then they 

will describe three  levels, e.g., groups ,A B  and .C   The levels of indicator variables are as follows: 

1. 2 30, 0 if the observation is from groupD D A   

2. 2 31, 0 if the observation is from groupD D B   

3. 2 30, 1 if the observation is from groupD D C   

The concerned regression model is 

 2
0 1 1 2 2 3 3 , ( ) 0, var( ) .y x D D E               
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In general, if a qualitative variable has m  levels, then ( 1)m   indicator variables are required, and each of 

them takes value 0 and 1. 

 

Consider the following examples to understand how to define such indicator variables and how they can be 

handled. 

 

Example: 

Suppose y  denotes the monthly salary of a person and D  denotes whether the person is graduate or non-

graduate. The model is 

 2
0 1 , ( ) 0, var( ) .y D E           

With n  observations, the model is  

 

0 1

0

0 1

1

, 1, 2,...,

( / 0)

( / 1)

( / 1) ( / 0)

i i i

i i

i i

i i i i

y D i n

E y D

E y D

E y D E y D

  

 



   

 

  

   

 

Thus 

- 0  measures the mean salary of a non-graduate. 

- 1  measures the difference in the mean salaries of a graduate and a non-graduate person. 

 

Now consider the same model with two indicator variables defined in the following way: 

 
1

2

1 if person is graduate

0 if person is nongraduate,

1 if person is nongraduate

0 if person is graduate.

i

i

D

D


 



 


 

The model with n  observations is  

 2
0 1 1 2 2 , ( ) 0, ( ) , 1, 2,..., .i i i i i iy D D E Var i n              

Then we have  

1.  1 2 0 2/ 0, 1 :i i iE y D D      Average salary of a non-graduate 

2.  1 2 0 1/ 1, 0 :i i iE y D D      Average salary of a graduate 

3.  1 2 0/ 0, 0i i iE y D D    :  cannot exist 

4.  1 2 0 1 2/ 1, 1 :i i iE y D D        cannot exist. 
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Notice that in this case 

 1 2 1i iD D   for all  i  

which is an exact constraint and  indicates the contradiction as follows: 

1 2 1i iD D    person is graduate 

1 2 1i iD D    person is non-graduate 

 

So multicollinearity is present in such cases.  Hence the rank of the matrix of explanatory variables falls 

short by 1. So  0 1,   and 2  are indeterminate, and least-squares method breaks down.  So the proposition 

of introducing two indicator variables is useful, but they lead to serious consequences. This is known as the 

dummy variable trap. 

 

If the intercept term is ignored, then the model becomes 

2
1 1 2 2 , ( ) 0, ( ) , 1, 2,...,i i i i i iy D D E Var i n            

then 

1 2 1

1 2 2

( / 1, 0) Average salary of a graduate.

( / 0, 1) Average salary of a non graduate.
i i i

i i i

E y D D

E y D D




   

    
 

 

So when intercept term is dropped, then 1  and 2  have proper interpretations as the average salaries of a 

graduate and non-graduate persons, respectively. 

 

Now the parameters can be estimated using ordinary least squares principle, and standard procedures for 

drawing inferences can be used. 

 

Rule: When the explanatory variable leads to m  mutually exclusive categories classification, then use 

( 1)m  indicator variables for its representation. Alternatively, use m  indicator variables but drop the 

intercept term.  
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Interaction term: 

Suppose a model has two explanatory variables – one quantitative variable and other an indicator variable. 

Suppose both interact and an explanatory variable as the interaction of them is added to the model. 

2
0 1 1 2 2 3 1 2 , ( ) 0, ( ) , 1,2,..., .i i i i i i i iy x D x D E Var i n                

 

To interpret the model parameters, we proceed as follows: 

Suppose the indicator variables are given by 

 
th

2 th

1 if person belongs to group

0 if person belongs to group
i

i A
D

i B

 


 

 iy   Salary of  thi  person. 

Then 

 
 2 0 1 1 2 3 1

0 1 1

/ 0 .0 .0

.
i i i i

i

E y D x x

x

   
 

    

 
 

This is a straight line with intercept 0  and slope 1 .  Next 

 
 2 0 1 1 2 3 1

0 2 1 3 1

/ 1 .1 .1

( ) ( ) .
i i i i

i

E y D x x

x

   
   

    

   
 

This is a straight line with intercept term 0 2( )   and slope 1 3( ).   

The model 

 0 1 1 2 2 3 1 2( )i i i i iE y x D x D        

has different slopes and different intercept terms. 

 

Thus 

2  reflects the change in intercept term associated  with the change in the group of person i.e., when the 

group changes from A  to .B  

3  reflects the  change in slope associated with the  change  in the group of person, i.e., when group changes  

 from A  to .B  
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Fitting of the model 

 0 1 1 2 2 3 1 2i i i i i iy x D x D          

is equivalent to fitting two separate regression models corresponding to 2 1iD   and 2 0iD  , i.e. 

0 1 1 2 3 1

0 2 1 3 1 2

.1 .1

( ) ( )
i i i i

i i i i

y x x

y x D

    
    

    

    
 

and 

0 1 1 2 3 1

0 1 1

.0 .0i i i i

i i i

y x x

y x

    
  

    

  
 

respectively.  

 

The test of hypothesis becomes convenient by using an indicator variable. For example, if we want to test  

whether the two regression models  are identical, the test of hypothesis  involves testing 

 0 2 3

1 2 3

: 0

: 0 and/or 0.

H

H

 
 

 

 
 

 

Acceptance of  0H  indicates that only a single model is necessary to explain the relationship. 

In another example, if the objective is to test that the two models differ with  respect to intercepts only  and 

they have the same  slopes, then the test of hypothesis involves testing 

 0 3

1 3

: 0

: 0.

H

H







 

 

Indicator variables versus quantitative explanatory variable 

The quantitative explanatory variables can be converted into indicator variables. For example, if the ages of 

persons are grouped as follows: 

Group 1: 1 day to 3 years 

Group 2: 3 years to 8 years 

Group 3: 8 years to 12 years 

Group 4: 12 years to 17 years 

Group 5: 17 years to 25 years 

then the variable “age” can be represented by four different indicator variables. 
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Since it is difficult to collect the data on individual ages, so this will help in an easy collection of data. A 

disadvantage is that some loss of information occurs. For example, if the ages in years are 2, 3, 4, 5, 6, 7  and 

suppose the indicator variable is  defined as 

 
1 if age of  person is 5 years

0 if age of  person is 5 years.

th

i th

i
D

i

  


 

 

Then these values become  0, 0, 0, 1, 1, 1.  Now looking at the value 1, one can not determine if it 

corresponds to age 5, 6 or 7 years. 

 

Moreover, if a quantitative explanatory variable is grouped into m  categories, then  ( 1)m   parameters are 

required whereas if the original variable is used as such, then only one parameter is required. 

 

Treating a quantitative variable as a qualitative variable increases the complexity of the model.  The degrees 

of freedom for error is also reduced. This can affect the inferences if the data set is small.  In large data sets,  

such an effect may be small. 

 

The use of indicator variables does not require any assumption about the functional form of the relationship 

between study and explanatory variables. 

 

Regression analysis and analysis of variance 

The analysis of variance is often used in analyzing the data from the designed experiments. There is a 

connection between the statistical tools used in the analysis of variance and regression analysis. 

 

We consider the case of analysis of variance in one way classification and establish its relation with 

regression analysis. 
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One way classification: 

Let there are k  samples  each of size n from k  normally distributed populations 2( , ), 1,2,..., .iN i k     The 

populations differ only  in their means, but they have the same variance 2.   This can be expressed as 

 

, 1, 2,..., ; 1, 2,...,

( )

ij i ij

i ij

i ij

y i k j n 

   

  

   

   

  

 

where  ijy  is the thj  observation for the thi  fixed treatment effect i i     or factor level,   is the 

general mean effect,  ij  are  identically and independently distributed  random errors following  2(0, ).N   

Note that 

 
1

,        0.
k

i i i
i

   


    

The null hypothesis is  

 0 1 2

1

: ... 0

: 0 for atleast one .
k

i

H

H i

  


   


 

Employing method of least squares, we obtain the estimator of   and i   as follows 

 

 22

1 1 1 1

1 1

1

1
ˆ0

1
ˆ ˆ0

k n k n

ij ij i
i j i j

k n

ij
i j

n

i ij i
ji

S y

S
y y

nk

S
y y y

n

  




 


   

 



   


   




     



 





 

where 
1

1
.

n

i ij
j

y y
n 

    

Based on this, the corresponding test statistic is 

 

2

1
0

2

1 1

( )
1

( )

( 1)

k

i
i

k n

ij i
i j

n
y y

k
F

y y

k n



 

   
  
 

 
 
 




 

which follows F -distribution with  1k   and ( 1)k n   degrees of freedom when the null hypothesis is true. 

The decision rule is to reject 0H  whenever  0 ( 1, ( 1))F F k k n    and it is concluded that the k  treatment 

means are not identical. 
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Connection with regression: 

To illustrate the relationship between fixed effect one-way analysis of variance and regression,  suppose 

there are 3 treatments so that the model becomes 

 , 1, 2,...,3, 1,2,..., .ij i ijy i j n        

There are 3 treatments which are the three levels of a qualitative factor. For example, the temperature can 

have three possible levels – low, medium and high. They can be represented by  two indicator variables as 

 
1

2

1 if the observation is from treatment 1

0 otherwise,

1 if the observation is from treatment 2
.

0 otherwise.

D

D


 



 


 

 

The regression model can be rewritten as 

 0 1 1 2 2 , 1, 2,3; 1,2,...,ij j j ijy D D i j n          

where 

1 1

2 2

: value of for observation with 1 treatment

: value of for observation with 2 treatment.

th st
j

th nd
j

D D j

D D j
 

 

Note that 

- parameters in the regression model are  0 1 2, , .    

- parameters in the analysis of variance model are 1 2 3, , , .     

We establish a relationship between the two sets of parameters. 

Suppose treatment 1 is used on thj  observation, so 1 21, 0j jD D   and  

 
1 0 1 2 1

0 1 1

.1 .0

.

j j

j

y    

  

   

  
 

In case of analysis of variance model, this is represented as 

 

1 1 1

1 1 1 1

0 1 1

  where 

.

j j

j

y   

    

  

  

   

  
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If treatment 2 is applied on  thj  observation, then 

- in the regression model set up, 

      1 20, 1j jD D   and 

       
2 0 1 2 2

0 2 2

.0 .1j j

j

y    

  

   

  
 

- in the analysis of variance model set up, 

       

2 2 2

2 2 2 2

0 2 2

 where 

.

j j

j

y   

    

  

  

   

  

 

When treatment 3 is used  on thj  observation, then 

           -   in the regression model set up, 

   3

1 2

3 0 1 2

0 3

0

.0 .0 j

j j

j

j

D D

y    

 

 

   

 

 

          -   in the analysis of variance model set up 

    

3 3 3

3 3 3 3

0 3

 where 

.

j j

j

y   

    

 

  

   

 

 

So finally, there are following three relationships 

  

0 1 1

0 2 2

0 3

0 3

1 1 2

2 2 3.

  
  
 

 
  

  

 
 



 

 

 
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In general, if there are k  treatments, then ( 1)k   indicator variables are needed. The regression model is 

given by 

0 1 1 2 2 1 1,... , 1, 2,..., ; 1, 2,...,ij j j k k j ijy D D D i k j n                

where 

 
1 if observation gets treatment

0 otherwise.

th th

ij

j i
D


 


 

In this case, the relationship is 

 0

, 1, 2,..., 1.
k

i i k i k

 
  



   
 

So  0  always estimates the mean of  thk  treatment and  i  estimates the differences between the means of  

thi  treatment  and thk  treatment. 


