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Chapter 9 

Multicollinearity 

A  basic assumption is multiple linear regression model is that the rank of the matrix of observations on 

explanatory variables is the same as the number of explanatory variables. In other words,  such a matrix is 

of full column rank. This, in turn, implies that all the explanatory variables are independent,  i.e., there is 

no linear relationship among the explanatory variables. It is termed that the explanatory variables are 

orthogonal.   

 

In many situations in practice,  the explanatory variables may not remain independent due to various 

reasons.  The situation where the explanatory variables are highly intercorrelated is referred to as 

multicollinearity. 

 

Consider the multiple regression model 
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, ~ (0, )

n k nk
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 
   

with  k  explanatory variables 1 2, ,..., kX X X  with usual assumptions including Rank ( ) .X k  

 

Assume the observations on all 'iX s  and 'iy s  are centered and scaled to unit length. So 

-  'X X  becomes a k k  matrix of correlation coefficients between the explanatory variables  and 

- 'X y  becomes a 1k   vector of correlation coefficients between explanatory and study variables. 

 

Let  1 2, ,..., kX X X X  where jX  is the thj  column of  X  denoting the n observations on .jX   The 

column  vectors 1 2, ,..., kX X X   are  linearly dependent if there exists a set of constants 1 2, ,..., ,k     not all 

zero, such that 
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If this holds exactly for a subset of the 1 2, ,..., kX X X , then rank ( ' ) .X X k  Consequently 1( ' )X X   does 

not exist.  If the condition 
1

0
k

j j
j

X


  is approximately true for some subset of  1 2, ,..., kX X X , then there 

will be a near-linear dependency in ' .X X   In such a case, the multicollinearity problem exists. It is also 

said that  'X X  becomes ill-conditioned. 
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Source of multicollinearity: 

1. Method of data collection: 

It is expected that the data is collected over the whole cross-section of variables. It may happen that the 

data is collected over a subspace of the explanatory variables where the variables are linearly dependent. 

For example, sampling is done only over a limited range of explanatory variables  in the population. 

 

2. Model and population constraints 

There may exist some constraints on the model or on the population from where the sample is drawn. The 

sample may be generated from that part of the population having linear combinations. 

 

3. Existence of identities or definitional relationships: 

There may exist some relationships among the variables which may be due to the definition of variables or 

any identity relation among them. For example, if data is collected on the variables like income, saving 

and expenditure, then income = saving + expenditure. Such a relationship will not change even when the 

sample size increases.  

 

4. Imprecise formulation of model 

The formulation of the model may unnecessarily be complicated. For example, the quadratic  (or 

polynomial) terms or cross-product terms may appear as explanatory variables.  For example, let there be 3 

variables 1 2,X X  and 3X , so 3.k    Suppose their cross-product terms 1 2 2 3,X X X X  and  1 3X X  are also 

added. Then k  rises to 6.  

 

5. An over-determined model 

Sometimes, due to over-enthusiasm, a large number of variables are included in the model to make it more 

realistic. Consequently, the number of observations ( )n  becomes smaller than the number of explanatory 

variables ( )k . Such a situation can arise in medical research where the number of patients may be small, 

but the information is collected on a large number of variables.  In another example, if there is time-series 

data for 50 years on consumption pattern, then it is expected that the consumption pattern does not remain 

the same for 50 years. So better option is to choose a smaller number of variables, and hence it results in  

.n k  
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Consequences of multicollinearity 

To illustrate the consequences of the presence of  multicollinearity, consider a model 

 2
1 1 2 2 , ( ) 0, ( )y x x E V I           

where  1 2,x x  and y  are scaled to length unity. 

The normal equation ( ' ) 'X X b X y  in this model becomes 
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where  r  is the correlation coefficient between 1x  and 2x ; jyr  is the correlation coefficient between jx  and 

( 1,2)y j   and   1 2, 'b b b  is the  OLSE of  . 
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So the covariance matrix is  2 1( ) ( ' )V b X X   
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If 1x  and  2x  are uncorrelated, then 0r   and 

 
1 0

'
0 1

X X
 

  
 

 

 rank ( ' ) 2.X X   

If  1x  and  2x  are perfectly correlated, then  1r    and  rank ( ' ) 1.X X   

 

If  1,r   then 1 2( ) ( )Var b Var b  . 

 

So if variables are perfectly collinear, the variance of OLSEs becomes large. This indicates highly 

unreliable estimates, and this is an inadmissible situation. 
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Consider the following result 

r  0.99 0.9 0.1 0 

1 2( ) ( )Var b Var b  250  25  21.01  2  

 

The standard errors of  1b  and 2b  rise sharply as  1r   and they break down at  1r    because 'X X  

becomes non-singular. 

 

 If  r  is close to 0, then multicollinearity does not harm, and it is termed as non-harmful 

multicollinearity.   

 If  r  is close to  +1 or -1 then multicollinearity inflates the variance, and it rises terribly. This is 

termed as harmful multicollinearity.  

 

There is no clear cut boundary to distinguish between the harmful and non-harmful multicollinearity. 

Generally, if  r  is low, the multicollinearity is considered as non-harmful, and if r  is high, the 

multicollinearity is regarded as harmful. 

 

In case of near or high multicollinearity, the following possible consequences are encountered. 

1. The OLSE remains an unbiased estimator of  , but its sampling variance becomes very large. So 

OLSE becomes imprecise, and property of BLUE does not hold anymore. 

2. Due to large standard errors, the regression coefficients may not appear significant.  Consequently, 

essential variables may be dropped. 

For example, to test  0 1: 0,H    we use t  ratio as 

 


1
0

1

.
( )

b
t

Var b
  

Since  1( )Var b  is large, so 0t  is small and consequently  0H  is more often accepted. 

Thus harmful multicollinearity intends to delete important variables. 

3. Due to large standard errors, the large confidence region may arise. For example, the confidence 

interval is given by 
1 1

, 1
2

( )
n

b t Var b


 
 

 
.  When  1( )Var b  it becomes large, then the confidence 

interval becomes wider. 
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4. The OLSE may be sensitive to small changes in the values of explanatory variables. If some 

observations are added or dropped, OLSE  may change considerably in magnitude as well as in 

sign. Ideally, OLSE should not change with the inclusion or deletion of variables. Thus OLSE loses 

stability and robustness. 

 

When the number of explanatory variables is more than two,  say k  as  1 2, ,..., kX X X  then the thj  

diagonal element of  1( ' )C X X   is 
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where  2
jR  is the multiple correlation coefficient or the coefficient of determination from the regression of  

jX  on the remaining  ( 1)k   explanatory variables. 

If  jX  is highly correlated with any subset of other ( 1)k   explanatory variables then 2
jR  is high and close 

to 1.  Consequently, the variance of  thj  OLSE 
2

2
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j
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 becomes very high. The 

covariance between ib  and jb  will also be large if  iX  and jX  are involved in the linear relationship 

leading to multicollinearity. 

 

The least-squares estimates jb  become too large in absolute value in the presence of multicollinearity. For 

example, consider the squared distance between b  and   as 
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The trace of a matrix is the same as the sum of its eigenvalues.  If  1 2, ,..., k    are the eigenvalues of  

( ' ),X X  then  
1 2

1 1 1
, ,...,

k  
 are the eigenvalues of  1( ' )X X   and hence 

 2 2

1

1
( ) , 0.

k

j
j j
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   
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If  ( ' )X X  is ill-conditioned due to the presence of multicollinearity, then at least one of the eigenvalue 

will be small. So the distance between b  and   may also be substantial. Thus 

 

2

2 1

2 1

( ) ( ) '( )

( ' ) ( ' 2 ' ' )

( ' ) ( ' ) '

E L E b b

tr X X E b b b

E b b tr X X

 

   

  





  

  

  

 

 b  is generally longer than   

 OLSE is too large in absolute value. 

 

The least-squares produces wrong estimates of parameters in the presence of multicollinearity. This 

does not imply that the fitted model provides wrong predictions also. If the predictions  are confined to 

x-space with non-harmful multicollinearity, then predictions are satisfactory. 

 

Multicollinearity diagnostics 

An important question arises about how to diagnose the presence of multicollinearity in the data on the 

basis of given sample information. Several diagnostic measures are available, and each of them is based on 

a particular approach. It is difficult to say that which of the diagnostic is best or ultimate. Some of the 

popular and important diagnostics are described further. The detection of multicollinearity involves 3 

aspects: 

(i) Determining its presence. 

(ii) Determining its severity. 

(iii) Determining its form or location. 

 

1. Determinant of  '   'X X X X  

This measure is based on the fact that the matrix 'X X  becomes ill-conditioned in the presence of 

multicollinearity.  The value of the determinant of  ' ,X X  i.e., 'X X  declines as the degree of 

multicollinearity increases. 

 

If Rank ( ' )X X k  then 'X X  will be singular and so ' 0.X X    So, as ' 0X X  ,  the degree of 

multicollinearity increases and it becomes exact or perfect at ' 0.X X    Thus  'X X  serves as a measure 

of multicollinearity and 'X X =0 indicates that perfect multicollinearity exists.  
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Limitations: 

This measure has the following limitations 

(i) It is not bounded as 0 ' .X X    

(ii) It is affected by the dispersion of explanatory variables. For example, if 2,k   then 

2
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  
   

where 12r  is the correlation coefficient between  1 2andx x . So 'X X  depends on the 

correlation coefficient and variability of the explanatory variable. If explanatory variables have 

very low variability, then 'X X  may tend to zero, which will indicate the presence of 

multicollinearity and which is not the case so. 

 

(iii) It gives no idea about the relative effects on individual coefficients. If multicollinearity is 

present,  then it will not indicate that which variable in 'X X  is causing multicollinearity and 

is hard to determine. 

 

2. Inspection of correlation matrix 

The inspection of off-diagonal elements ijr  in 'X X  gives an idea about the presence of multicollinearity.  

If  iX  and jX  are nearly linearly dependent, then ijr  will be close to 1.  Note that the observations in X  

are standardized in the sense that each observation is subtracted from the mean of that variable and divided 

by the square root of the corrected sum of squares of that variable. 

 

When more than two explanatory variables are considered, and if they are involved in near-linear 

dependency, then it is not necessary that any of the ijr  will be large. Generally, a pairwise inspection of 

correlation coefficients is not sufficient for detecting multicollinearity in the data. 
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3. Determinant of correlation matrix 

Let D  be the determinant of the correlation matrix then 0 1.D   

If  0D   then it indicates the existence of exact linear dependence among explanatory variables. 

If  1D   then the columns of  X  matrix are orthonormal. 

Thus a value close to 0 is an indication of a high degree of multicollinearity. Any value of  D  between 0 

and 1 gives an idea of the degree of multicollinearity. 

 

Limitation 

It gives no information about the number of linear dependencies among explanatory variables. 

 

Advantages over 'X X  

(i)  It is a bounded measure,  0 1.D   

(ii)  It is not affected by the dispersion of explanatory variables. For example, when 2,k   
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4. Measure based on partial regression: 

A measure of multicollinearity can be obtained on the basis of coefficients of determination based on 

partial regression.  Let 2R  be the coefficient of determination in the full model, i.e., based on all 

explanatory  variables and 2
iR  be the coefficient  of determination in the model when the thi  explanatory 

variable is dropped,  1, 2,..., ,i k  and  2 2 2 2
1 2( , ,..., ).L kR Max R R R  

Procedure: 

(i) Drop one of the explanatory variables among k  variables, say 1X . 

(ii) Run regression of  y over rest of the ( 1)k   variables 2 3, ,..., kX X X . 

(iii) Calculate 2
1 .R  

(iv) Similarly, calculate   2 2 2
2 3, ,..., kR R R . 

(v) Find  2 2 2 2
1 2( , ,..., ).L kR Max R R R  

(vi) Determine 2 2.LR R  
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The quantity 2 2( )LR R  provides a measure of multicollinearity. If multicollinearity is present, 2
LR  will be 

high. Higher the degree of multicollinearity, higher the value of  2.LR   So in the presence of 

multicollinearity, 2 2( )LR R  be low. 

Thus if  2 2( )LR R  is close to 0, it indicates the high degree of multicollinearity. 

 

Limitations: 

(i) It gives no information about the underlying relations about explanatory variables, i.e., how 

many relationships are present or how many explanatory variables are responsible for the 

multicollinearity. 

(ii) A small value of  2 2( )LR R  may occur because of poor specification of the model also and it 

may be inferred in such situation that multicollinearity is present. 

 

5. Variance inflation factors (VIF): 

The matrix 'X X  becomes ill-conditioned in the presence of multicollinearity in the data. So the diagonal 

elements of 1( ' )C X X   helps in the detection of multicollinearity.  If 2
jR  denotes the coefficient of 

determination obtained when jX  is regressed on the  remaining ( 1)k   variables  excluding ,jX  then the 

thj  diagonal element of C  is  

 
2

1
.

1jj
j

C
R


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If  jX  is nearly orthogonal to remaining explanatory variables, then 2
jR  is small and consequently jjC  is 

close to 1. 

 

If  jX  is nearly linearly dependent on a subset of remaining explanatory variables, then 2
jR  is close to 1 

and consequently jjC  is large. 

Since the variance of  thj  OLSE of  j  is  

 2( )j jjVar b C  
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So jjC  is the factor by which the variance of  jb  increases when the explanatory variables are near-linear 

dependent. Based on this concept, the variance inflation factor for the thj  explanatory variable is  defined 

as 

 
2`

1
.

1j
j

VIF
R




 

This is the factor which is responsible for inflating the sampling variance. The combined effect of 

dependencies among the explanatory variables on the variance of a term is measured by the VIF of that 

term in the model. 

 

One or more large VIFs indicate the presence of multicollinearity in the data.  

 

In practice, usually, a 5VIF   or 10 indicates that the associated regression coefficients are poorly 

estimated because of multicollinearity.  If regression coefficients are estimated by OLSE and its variance 

is  2 1( ' ) .X X    So VIF indicates that a part of this variance is given by VIFj. 

 

Limitations: 

(i) It sheds no light on the number of dependencies among the explanatory variables. 

(ii) The rule of  VIF > 5 or 10 is a rule of thumb which may differ from one situation to another 

situation. 

 

Another interpretation of  VIFj 

The VIFs can also be viewed as follows. 

The confidence interval of  thj  OLSE of  j  is given by 

 2
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The length of the confidence interval is 

 2
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 . 
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Now consider a situation where X  is an orthogonal matrix, i.e., 'X X I  so that 1,jjC   sample size is 

the same as  earlier and the same root mean squares 2

1

1
( )

n

ij j
i

x x
n 

  
 
 , then the length of confidence 

interval becomes 

 
, 1

2

ˆ* 2 .
n k

L t
 

  

Consider the ratio 

 .
*
j

jj

L
C

L
  

Thus  jVIF   indicates the increase in the length of the confidence interval of thj  regression coefficient 

due to the presence of multicollinearity. 

 

6. Condition number and condition index: 

Let  1 2, ,..., k    be the eigenvalues (or characteristic roots) of  ' .X X   Let 

 max 1 2

min 1 2

( , ,..., )

( , ,..., ).
k

k

Max

Min

   
   




 

The condition number ( )CN  is defined as 

 max

min

, 0CN CN



   . 

The small values of characteristic roots indicate the presence of near-linear dependency in the data. The 

CN  provides a measure of spread in the spectrum of characteristic roots of ' .X X  

 

The condition number provides a measure of multicollinearity. 

 If 100,CN   then it is considered as non-harmful multicollinearity. 

 If 100 1000,CN   then it indicates that the multicollinearity is moderate to severe (or strong). 

This range is referred to as danger level. 

 If  1000,CN    then it indicates a severe (or strong)  multicollinearity. 

 

The condition number is based only or two eigenvalues:  min maxand  .  Another measures are condition 

indices which use the information on other eigenvalues.  
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The condition indices of 'X X  are defined as 

 max , 1, 2,..., .j
j

C j k



   

In fact, the largest .jC CN  

 

The number of condition indices that are large, say more than 1000, indicate the number of near-linear 

dependencies  in ' .X X  

 

A limitation of  CN  and  jC  is that they are unbounded measures as  0 CN   , 0 jC   . 

 

7. Measure based on characteristic roots and proportion of variances: 

Let  1 2, ,.., k    be the eigenvalues of 1 2' , ( , ,..., )kX X diag      is a k k  matrix and V  is a k k  

matrix constructed by the eigenvectors of ' .X X   Obviously, V  is an orthogonal matrix.  Then 'X X   can 

be decomposed as ' 'X X V V  .  Let 1 2, ,..., kV V V  be the column of  V .  If there is a near-linear 

dependency in the data,  then  j    is close to zero and the nature of linear dependency is described by the 

elements of the associated eigenvector jV . 

 

The covariance matrix of OLSE is 
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where 1 2, ,...,i i ikv v v  are the  elements in .V  

 

The condition indices are 

 max , 1, 2,..., .j
j

C j k



   

 

 

 



Regression Analysis  |  Chapter 9  |  Multicollinearity |  Shalabh, IIT Kanpur 
 131313

Procedure: 

(i) Find condition index 1 2, ,..., .kC C C  

(ii) (a) Identify those 'i s  for which jC  is greater than the danger level 1000. 

(b) This gives the number of linear dependencies. 

(c) Don’t consider those   'jC s  which are below the danger level. 

(iii) For such 's  with condition index above the danger level, choose one such eigenvalue, say 

.j  

(iv) Find the value of the proportion of variance corresponding to  j  in 

1 2( ), ( ),..., ( )kVar b Var b Var b  as 

  
2 2

2
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( / ) /

( / )

ij j ij j
ij k

j
ij j

j

v v
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 
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
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Note that  
2
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v


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 can be found from the  expression 

   
2 2 2

2 1 2
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  
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 

 

 i.e., corresponding to thj  factor. 

 

The proportion of variance ijp  provides a measure of multicollinearity. 

 

If  0.5,ijp    it indicates that ib  is adversely affected by the multicollinearity, i.e., an estimate of i  is 

influenced by the presence of multicollinearity. 

 

It is a good diagnostic tool in the sense that it tells about the presence of harmful multicollinearity as well 

as also indicates the number of linear dependencies responsible for multicollinearity. This diagnostic is 

better than other diagnostics. 
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The condition indices are also defined  by the singular value decomposition of X  the matrix as follows: 

  'X UDV  

where U  is n k  matrix, V  is k k  matrix, ' ,   ' ,  U U I V V I D   is k k  matrix, 

1 2( , ,..., )kD diag     and 1 2, ,..., k    are the singular values of  ,X V  is a matrix whose columns are 

eigenvectors corresponding to eigenvalues of 'X X  and  U  is a matrix whose columns are the 

eigenvectors associated with  the k  nonzero eigenvalues of ' .X X  

 

The condition indices of X  matrix are defined as 

 max , 1, 2,...,j
j

j k



   

where   max 1 2( , ,..., ).kMax     

If  1 2, ,..., k    are the eigenvalues of  'X X  then 

 2' ( ') ' ' ' ',X X UDV UDV VD V V V     

so    2 , 1, 2,..., .j j j k    

 

Note that with  2 ,j j   

 

2
2

2
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2
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ij

j

v
Var b
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VIF
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p

VIF




















  

The ill-conditioning in X  is reflected  in the size of singular values. There will be one small singular value 

for each non-linear dependency. The  extent of ill-conditioning is described by how small is j  relative to 

max .  

 

It is suggested that the explanatory variables should be scaled to unit length but should not be centered 

when computing ijp .  This will helps in diagnosing the role of intercept term in near-linear dependence. 

No unique guidance is available in the literature on the issue of centering the explanatory variables. The 

centering makes the intercept orthogonal to explanatory variables. So this may remove the ill-conditioning 

due to intercept term in the model. 
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Remedies for multicollinearity: 

Various techniques have been proposed to deal with the problems resulting from the presence of 

multicollinearity in the data. 

 

1. Obtain more data 

The harmful multicollinearity arises essentially because the rank of 'X X  falls below k  and 'X X  is 

close to zero. Additional data may help in reducing the sampling variance of the estimates. The data need 

to be collected such that it helps in breaking up the multicollinearity in the data. 

 

It is always not possible to collect additional data for various reasons as follows. 

 The experiment and process have finished and no longer available. 

 The economic constraints may also not allow collecting the additional data. 

 The additional data may not match with the earlier collected data and may be unusual. 

 If the data is in time series, then longer time series may force to take ignore data that is too far in 

the past. 

 If multicollinearity is due to any identity or exact relationship, then increasing the sample size will 

not help. 

 Sometimes,  it is not advisable to use the data even if it is available.  For example, if the data on 

consumption pattern is available for the years 1950-2010,  then one may not like to use it as the 

consumption pattern usually does not remains the same for such a long period. 

 

 

2.  Drop some variables that are collinear: 

If possible, identify the variables which seem to cause multicollinearity. These collinear variables can be 

dropped so as to match the condition of fall rank of X matrix. The process of omitting the variables way 

be carried out on the basis of some kind of ordering of explanatory variables, e.g., those variables can be 

deleted first which have smaller value of t -ratio.  In another example, suppose the experimenter is not 

interested in all the parameters. In such cases, one can get the estimators of the parameters of interest 

which have smaller mean squared errors them the variance of OLSE by dropping some variables. 

 

If some variables are eliminated,  then this may reduce the predictive power of the model. Sometimes there 

is no assurance of how the model will exhibit less multicollinearity. 
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3. Use some relevant prior information: 

One may search for some relevant prior information about the regression coefficients.  This may lead to 

the specification of estimates of some coefficients. The more general situation includes the specification of 

some exact linear restrictions and stochastic linear restrictions. The procedures like restricted regression 

and mixed regression can be used for this purpose. The relevance and correctness of information play an 

important role in such analysis, but it is challenging to ensure it in practice. For example, the estimates 

derived in the U.K. may not be valid in India. 

 

4. Employ generalized inverse 

If  rank ( ' )X X k , then the generalized inverse can be used to find the inverse of 'X X .  Then    can be 

estimated by ˆ ( ' ) ' .X X X y   

In such a case, the estimates  will not be unique except in the case of use of Moore-Penrose inverse of 

( ' ).X X  Different methods of finding generalized inverse may give different results.  So applied workers 

will get different results. Moreover, it is also not known that which method of finding generalized inverse 

is optimum. 

 

5. Use of principal component regression 

The principal component regression is based on the technique of principal component analysis. The  k  

explanatory variables are transformed into a new set of orthogonal variables called principal components.  

Usually, this technique is used for reducing the dimensionality of data by retaining some levels of 

variability of explanatory variables which is expressed by the variability in the study variable. The 

principal components involve the determination of a set of linear combinations of explanatory variables 

such that they retain the total variability of the system, and these linear combinations are mutually 

independent of each other.  Such obtained principal components are ranked in the order of their 

importance. The importance  being judged in terms of variability explained by a principal component 

relative to the total variability in the system. The procedure then involves eliminating some of the 

principal components which contribute to explaining relatively less variation. After elimination of the 

least important principal components, the set up of multiple regression is used by replacing the 

explanatory variables with principal components. Then study variable is regressed against the set of 

selected principal components using the ordinary least squares method. Since all the principal 

components are orthogonal, they are mutually independent, and so OLS is used without any problem.  

Once the estimates of regression coefficients for the reduced set of orthogonal variables  (principal 
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components) have been obtained, they are mathematically transformed into a new set of estimated 

regression coefficients that correspond to the original correlated set of variables. These new estimated 

coefficients are the principal components estimators of regression coefficients. 

 

Suppose there are k  explanatory variables 1 2, ,..., .kX X X  Consider the linear function of  1 2, ,.., kX X X  

like 

 
1

1

2
1

etc.

k

i i
i

k

i i
i

Z a X

Z b X












 

The constants 1 2, ,..., ka a a  are determined such that the variance of 1Z  is maximized subject to the 

normalizing condition that 2

1

1.i
i

a


  The constant 1 2, ,..., kb b b  are determined such that the variance of 2Z  

is maximized subject to the normality condition that  2

1

1i
i

b


  and is independent of the first principal 

component.  

 

We continue with such process and obtain k  such linear combinations such that they are orthogonal to 

their preceding linear combinations and satisfy the normality condition. Then we obtain their variances. 

Suppose such linear combinations are 1 2, ,.., kZ Z Z  and for them, 1 2( ) ( ) ... ( ).kVar Z Var Z Var Z     The 

linear combination having the largest variance is the first principal component. The linear combination 

having the second largest variance is the second-largest principal component and so on.   These principal 

components have the property that 
1 1

( ) ( ).
k k

i i
i i

Var Z Var X
 

    Also, the  1 2, ,..., kX X X  are correlated but  

1 2, ,.., kZ Z Z  are orthogonal or uncorrelated. So there will be zero multicollinearity among  1 2, ,.., kZ Z Z . 

 

The problem of multicollinearity arises because 1 2, ,..., kX X X  are not independent. Since the principal 

components based on   1 2, ,..., kX X X  are mutually independent, so they can be used as explanatory 

variables, and such regression will combat the multicollinearity. 
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Let 1 2, ,..., k    be the eigenvalues of  1 2' , ( , ,..., )kX X diag      is k k  diagonal matrix,  V  is a k k  

orthogonal matrix whose columns are the eigenvectors associated with  1 2, ,..., k   .  Consider the 

canonical form of the  linear model 

 '

y X

XVV

Z

 
 

 

 
 
 

 

where  , ' , ' ' 'Z XV V V X XV Z Z      . 

 

Columns of   1 2, ,..., kZ Z Z Z  define a new set of explanatory variables which are called as principal 

components. 

 

The OLSE of   is 

1

1

ˆ ( ' ) '

'

Z Z Z y

Z y

 





 
 

and its covariance matrix is 

2 1

2 1

2

1 2

ˆ( ) ( ' )

 

1 1 1
 , ,...,

k

V Z Z

diag

 




  







 

 
  

 

 

Note that  j  is the variance of  thj  principal component and 
1 1

'
k k

i j
i j

Z Z Z Z
 

   .  A small eigenvalue 

of  'X X  means that the linear relationship between the original explanatory variable exists and the 

variance of the corresponding orthogonal regression coefficient is large, which indicates that the 

multicollinearity exists. If one or more j  is small, then it indicates that multicollinearity is present. 

 

Retainment of principal components: 

The new set of variables, i.e., principal components are orthogonal, and they retain the same magnitude of 

variance as of the original set. If multicollinearity is severe, then there will be at least one small value of 

eigenvalue. The elimination of one or more principal components associated with the smallest eigenvalues 

will reduce the total variance in the model. Moreover, the principal components responsible for creating 

multicollinearity will be removed, and the resulting model will be appreciably improved. 
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The principal component matrix  1 2, ,..., kZ Z Z Z  with 1 2, ,..., kZ Z Z  contains precisely the same 

information as the original data in X in the sense that the total variability in X and Z is the same.  The 

difference between them is that the original data are arranged into a  set of new variables which are 

uncorrelated with each other and can be ranked with respect to the magnitude of their eigenvalues. The thj  

column vector jZ  corresponding to the largest j  accounts for the  largest proportion of the variation in 

the original  data. Thus the jZ ’s are indexed so that 1 2 ... 0k       and j  is the variance of jZ . 

 

A strategy of elimination of principal components is to begin by discarding the component associated with 

the smallest eigenvalue. The idea behind to do so is that the principal component with the smallest 

eigenvalue is contributing least variance and so is least informative. 

 

Using this procedure, principal components are eliminated until the remaining components explain some 

preselected variance is terms of percentage of the total variance. For example, if 90% of the total variance 

is needed, and suppose r  principal components are eliminated which means that ( )k r  principal 

components contribute 90%  variation, then r  is selected to satisfy  

  1

1

0.90.

k r

i
i
k

i
i















 

Various strategies to choose the required number of principal components are also available in the 

literature. 

 

Suppose after using such a rule, the r  principal components are eliminated.  Now  only ( )k r  

components will be used for regression. So Z  matrix is partitioned as   

     (    )r k r r k rZ Z Z X V V    

where   rZ  submatrix  is of order n r  and contains the principal components to be eliminated. The 

submatrix  k rZ   is of order   ( )n k r   and  contains the principal components to be retained. 

 

The reduced model obtained after the elimination of r  principal components can be expressed as 

 *.k r k ry Z      
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The random error component is represented as *  just to distinguish with  .  The reduced coefficients 

contain the coefficients associated with retained 'jZ s .  So 

 

 
 
 

1 2

1 2

1 2

, ,...,

, ,...,

, ,..., .

k r k r

k r k r

k r k r

Z Z Z Z

V V V V

   
 

 

 







 

Using OLS on the model with retained principal components, the OLSE of  k r   is 

 ' 1 'ˆ ( )k r k r k r k rZ Z Z y 
    . 

Now it is transformed back to original explanatory variables as follows: 

 '

     '

     

ˆ ˆ

k r k r

pc k r k r

V

V

V

 

 

 
 

 





 

 

is the principal component regression estimator of  .  

This method improves the efficiency as well as multicollinearity. 

 

6. Ridge regression 

The OLSE is the best linear unbiased estimator of regression coefficient in the sense that it has minimum 

variance in the class of linear and unbiased estimators. However, if the condition of unbiased can be 

relaxed, then it is possible to find a biased estimator of regression coefficient say ̂  that has smaller 

variance them the unbiased OLSE  b .  The mean squared error (MSE) of  ̂  is  

   
2

2

2

2

ˆ ˆ( ) ( )

ˆ ˆ ˆ( ) ( )

ˆ ˆ( ) ( )

ˆ ˆ( ) ( ) .

MSE E

E E E

Var E

Var Bias

  

   

  

 

 

     

    

    

 

Thus ˆ( )MSE    can be made smaller than ˆ( )Var   by introducing small bias is ̂ .  One of the approach to 

do so is ridge regression.  The ridge regression estimator is obtained by solving the normal equations of 

least squares estimation. The normal equations are modified as 

 
 

  1

ˆ' '

ˆ ' '

ridge

ridge

X X I X y

X X I X y

 

  

 

  
 

is the ridge regression estimator of    and 0   is any characterizing scalar termed as biasing 

parameter.  
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As  ˆ ˆ0, ( ) and as , 0.b OLSE        

 

So larger the value of   , larger shrinkage towards zero. Note that the OLSE in inappropriate to use in the 

sense that it has very high variance when multicollinearity is present in the data. On the other hand, a very 

small value of  ̂  may tend to accept the null hypothesis  0 : 0H    indicating that the corresponding 

variables are not relevant. The value of the biasing parameter controls the amount of shrinkage in the 

estimates. 

 

Bias of ridge regression estimator: 

The bias of ˆ
ridge  is 

 

1

1

1

1

ˆ ˆ( ) ( )

                  ( ' ) ' ( )

     ( ' ) '

     ( ' ) ' '

     ( ' ) .

ridge ridgeBias E

X X I X E y

X X I X X I

X X I X X X X I

X X I

  

 

 

  

  









 

  

    
   

  

 

Thus the ridge regression estimator is a biased estimator of   . 

 

Covariance matrix: 

The covariance matrix of ˆ
ridge  is defined as 

  'ˆ ˆ ˆ ˆ ˆ( ) ( ) ( )ridge ridge ridge ridge ridgeV E E E         
. 

Since 

 

1 1
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1

ˆ ˆ( ) ( ' ) ' ( ' ) '

( ' ) '( )

( ' ) ' ,

ridge ridgeE X X I X y X X I X X

X X I X y X

X X I X

    

 

 

 





    

  
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so 

 
1 1

2 1 1

ˆ( ) ( ' ) ' ( ) ( ' )

( ' ) ' ( ' ) .

ridgeV X X I X V X X X I

X X I X X X X I
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  

 
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  

  
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Mean squared error: 

The mean squared error of ˆ
ridge  is  

2

2

2 1 1 2 2

2 2 2
2

1

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ( ) ( )

( ' ) ' ( ' ) '( ' )

'( ' )
( )

ridge ridge ridge

ridge ridge

k
j

j j

MSE Var bias

tr V bias

tr X X I X X X X I X X I

X X I

  

 

      


    

 

  





    

       
      

  


 

where 1 2, ,..., k    are the eigenvalues of  ' .X X  

 
Thus as   increases, the bias in ˆ

ridge  increases but its variance decreases. Thus the trade-off between bias 

and variance hinges upon the value of .  It can be shown that there  exists a value of   such that 

 ˆ( ) ( )ridgeMSE Var b   

provided '   is bounded. 

 

Choice of   : 

The estimation of ridge regression estimator depends upon the value of   .  Various approaches have been 

suggested in the literature to determine the value of   .  The value of   can be chosen on the bias of 

criteria like 

- the stability of estimators with respect to   . 

- reasonable signs. 

- the magnitude of residual sum of squares etc. 

We consider here the determination of    by the inspection of ridge trace. 

 

Ridge trace: 

Ridge trace is the graphical display of ridge regression estimator versus  . 

 

If multicollinearity is present and is severe, then the instability of regression coefficients is reflected in the 

ridge trace. As    increases, some of the ridge estimates vary dramatically, and they stabilize at some 

value of   .  The objective in ridge trace is to inspect the trace (curve)  and find the reasonable small value 

of    at which the ridge regression estimators are stable. The ridge regression estimator with such a choice 

of    will have smaller  MSE than the variance of OLSE. 
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An example of ridge trace is as follows for a model with 6 parameters. In this ridge trace, the ˆ
ridge  is 

evaluated for various choices of    and the corresponding values of all regression coefficients ( )
ˆ

j ridge ’s,  

j=1,2,…,6 are plotted versus  . These values are denoted by different symbols and are joined by a smooth 

curve. This produces a ridge trace for the respective parameter. Now choose the value of   where all the 

curves stabilize and become nearly parallel. For example, the curves in the following figure become 

almost parallel, starting from  4   or so. Thus one possible choice of   is 4   and parameters can 

be estimated as   1

4
ˆ ' 'ridge X X I X y    . 

                 

The figure drastically exposes the presence of multicollinearity in the data. The behaviour of  ( )î ridge  at  

0 0   is very different than at other values of   . For small values  of  , the estimates change rapidly. 

The estimates stabilize gradually as   increases. The value of   at which all the estimates stabilize gives 

the desired value of    because moving away from such   will not bring any appreciable reduction in the 

residual sum of squares. It multicollinearity is present, then the variation in ridge regression estimators is 

rapid around 0.    The optimal   is chosen such that after that value of , almost all traces stabilize. 
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Limitations: 

1. The choice of   is data-dependent and therefore is a random variable. Using it as a random variable 

violates the assumption that   is constant. This will disturb the optimal properties derived under the 

assumption of constancy of  . 

2. The value of   lies in the interval (0, ) .  So a large number of values are required for exploration. 

This result is wasting of time. This is not a big issue when working with the software. 

3. The choice of   from graphical display may not be unique. Different people may choose different   , 

and consequently, the values of ridge regression estimators will be changing.  Another choice of   is 

2ˆ

'

k

b b

   where b and 2̂ are obtained from the least-squares estimation. 

4. The stability of numerical estimates of ˆ 'i s  is a rough way to determine . Different estimates may 

exhibit stability for different   , and it may often be hard to strike a compromise.  In such a situation, 

generalized ridge regression estimators are used. 

5. There is no guidance available regarding the testing of hypothesis and for confidence interval 

estimation. 

 

Idea behind ridge regression estimator: 

The problem of multicollinearity arises because some of the eigenvalues roots of 'X X  are close to zero or 

are zero. So if  1 2, ,..., p    are the characteristic roots, and if 

 1 2' ( , ,..., )kX X diag       

then 

 1 1ˆ ( )ridge I b        

where  b is the OLSE of  given by 

1 1( ' ) ' ' .b X X X y X y      

Thus a particular element will be of the forms 

 
1

.
1

i
i i

i

i

b b


  





 

So a small quantity   is added to  i  so that if  0,i   even then i

i


 

 remains meaningful. 
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Another interpretation of ridge regression estimator: 

In the model ,y X     obtain the least squares estimator of   when 2
1

1

,
k

i

C


  where  C is some 

constant.  So minimize 

 ( ) ( ) '( ) ( ' )y X y X C            

where   is the Lagrangian multiplier. Differentiating  ( )S   with respect to  , the normal equations are 

obtained as 

 
1

( )
0 2 ' 2 ' 2 0

ˆ ( ' ) ' .ridge

S
X y X X

X X I X y

  


  


     



  
 

Note that if C is very small, it may indicate that most of the regression coefficients are close to zero and if 

C is large, then it may indicate that the regression coefficients are away from zero. So C puts a sort of 

penalty on the regression coefficients to enable its estimation.  


