

## Solution

### BIOLOGICAL CLASSIFICATION AND PLANT KINGDOM WS

#### Class 11 - Biology

1. (b) By producing spores  
**Explanation:** Bacteria reproduce mainly by fission. Sometimes, under unfavourable conditions, they produce spores. They also reproduce by a sort of sexual reproduction by adopting a primitive type of DNA transfer from one bacterium to the other.
2. (b) Having cell wall and chloroplast  
**Explanation:** The plant cells have a eukaryotic structure with prominent chloroplasts and cell walls mainly made of cellulose.
3. (c) Endospore  
**Explanation:** A bacterium capable of tolerating extreme heat, dryness, and toxic chemicals have the ability to produce endospores inside the body that help them to tide over unfavorable conditions.
4. (b) Algal Virus - Mycophages  
**Explanation:** Mycophages are not a group of bacteria. They are a group of organisms that use algae as food. The animal virus is called Zoophagiae, plant virus phytophagiae, and the bacterial virus is called bacteriophages.
5. (d) Capsid  
**Explanation:** A capsid is the protein shell of a virus. It consists of several oligomeric structural subunits made of a protein called protomers. The capsid encloses the genetic material of the virus.
6. (c) Mycelium  
**Explanation:** The body of the filamentous fungus is known as mycelium, which is a thread-like structure. Mycelium produces hyphae and sporogenous cells to produce spores.
7. (b) Basidiomycetes  
**Explanation:** Commonly known forms of basidiomycetes are mushrooms, bracket fungi, or puffballs.
8. (a) RNA  
**Explanation:** The virus in which genetic material is RNA is called a retrovirus. In this virus reverse transcription takes place to form DNA that synthesizes proteins.
9. (b) Dikaryon  
**Explanation:** In fungi like ascomycetes and basidiomycetes, an intervening dikaryotic stage ( $n + n$  i.e. two nuclei per cell) occurs; such a condition is called a dikaryon and the phase is called dikaryon phase of fungus.
10. (c) Fungi  
**Explanation:** Fungi is important in the nutrient cycle and acts as decomposer along with bacteria and mineralizers of the biosphere to regular recycling of nutrients in the biosphere.
11. (a) Chemosynthetic autotrophic bacteria  
**Explanation:** Chemosynthetic autotrophic bacteria oxidize various inorganic substances such as nitrates, nitrites, and ammonia and use the released energy for their ATP production. They play a great role in recycling nutrients like nitrogen, phosphorous, iron, and sulphur.
12. (b) Lichens  
**Explanation:** Lichens can be used as air pollution indicators, especially of the concentration of sulfur dioxide in the atmosphere. Lichens are plants that grow in exposed places such as rocks or tree bark.

13. (a) Mycelium

**Explanation:** Mycelium is the vegetative part of a fungus or fungus-like bacterial colony, consisting of a mass of branching, thread-like hyphae.

14.

(b) Protista

**Explanation:** Monera contains all prokaryotic organisms and bacteria. Fungi can have unicellular as well as multicellular organisms that come under the Protista.

15. (a) Symbiosis

**Explanation:** Symbiosis in lichens is the mutually helpful symbiotic relationship of green algae and/or blue-green algae (cyanobacteria) living among filaments of a fungus. The fungus benefits from the algae or cyanobacteria because they produce food by photosynthesis.

16. (a) Drosera

**Explanation:** Drosera plant is partially heterotrophic. These plants capture insects to fulfil its protein requirement although it performs photosynthesis also.

17.

(d) Mesosome

**Explanation:** Bacteria belong to the kingdom Monera in which organisms are unicellular and prokaryotic. Prokaryotic organisms lack membrane-bounded organelles like mitochondria where respiration occurs. In bacteria, respiration occurs in the mesosome.

18.

(c) All of these

**Explanation:** Phycomycetes belong to fungi. They live in aquatic habitats, moist and damp places, as obligate parasites on plants and on decaying wood.

19. (a) Aristotle

**Explanation:** Over 2000 years ago, a Greek scientist named Aristotle was one of the first people to classify living things. He noticed that living things fit into two main groups: green and did move. Aristotle next divided all animals into three groups. He based his groups on where the animals lived.

20.

(b) Poliomyelitis virus

**Explanation:** A virus consists of genetic material (DNA or RNA) surrounded by protein capsules. They are of different shapes and sizes. The poliomyelitis virus is cubical in shape.

21.

(d) Zoospores

**Explanation:** In fungi, the asexual reproduction takes place by spores called conidia or sporangiospores or zoospores, and sexual reproduction is by oospores, ascospores and basidiospores.

22. (a) Downy mildew

**Explanation:** Downy mildew disease is caused due to fungus that forms cottony growth on the surface of the host. The leaves' surface gets reduced that alters the photosynthesis rate.

23.

(b) Enaima and Anaima

**Explanation:** Haemoglobin in RBCs imparts red colour to it. The organisms whose blood contains haemoglobin are called enaima and those without it are called anaima.

24.

(b) Bacteriophage

**Explanation:** A bacteriophage is a virus that infects and replicates within a bacterium.

25.

(c) Protonema

**Explanation:** The spore of moss germinates to produce protonema. It is a creeping, green, branched, and frequently filamentous stage, which develops into secondary protonema as a lateral bud. This stage bears sex organs.

26.

**(b)** Haploid and is found in mosses

**Explanation:** A protonemal stage is a juvenile or tentative stage in the life history of mosses. They are haploid in nature. It arises after the germination of spore. It is short-lived.

27.

**(c)** Lichen

**Explanation:** Lichens contain colorful dyes that can be extracted and used in litmus solution.

28.

**(b)** Sporophylls

**Explanation:** The sporophytes bear sporangia that are subtended by leaf-like appendages called sporophylls.

29.

**(c)** Lower part of capsule

**Explanation:** The sporophyte of moss is differentiated into three parts - foot, seta, and capsule. The capsule, in turn, is differentiated into 3 regions.

- i. Apophysis - the sterile basal portion of the capsule, it is in continuity with seta
- ii. Theca or body of capsule, which is the fertile region, and
- iii. Operculum the apical region of capsule.

Apophysis is rich in chloroplast and thus the photosynthetic region of moss, it also provides nutrition to the developing sporangium.

30. **(a)** Haploid

**Explanation:** The main plant body of the bryophyte is haploid. It produces gametes, hence is called a gametophyte.

31. **(a)** Equisetum

**Explanation:** Equisetum of Pteridophyta belongs to class Sphenopsida.

32.

**(c)** Ovule

**Explanation:** The cones bearing megasporophylls with ovules or megasporangia are called macrosporangiate or female strobili.

33.

**(d)** Archegonia

**Explanation:** Pteridophytes and Gymnosperms belong to a different division of plant kingdom but both of them possess Archegonia as female sex organ which produces female gamete for sexual reproduction.

34. **(a)** Pinus

**Explanation:** Roots in some genera of gymnosperms have a fungal association in the form of mycorrhizal (Pinus).

35. **(a)** Prothallus

**Explanation:** Fern spores germinate to give rise to inconspicuous, small but multicellular, free-living, mostly photosynthetic thalloid gametophytes called prothallus. The gametophytes bear male and female sex organs called antheridia and archegonia.

36.

**(d)** Bryophyta

**Explanation:** The lichen and mosses play an important role in soil formation. Both are slow but efficient soil formers. The lichens, however, are the pioneers to colonize barren, bare rocky surfaces where no other plants can grow. The lichen thalli secrete organic acids which gradually dissolve and disintegrate the rocks to which they cling. The rocks particle together with the dead and decaying the older part of the lichen thalli from fertile soil. Mosses make their appearance when a sufficient amount of this fertile soil gathers in the crevices of the rock's surface.

37.

**(b)** Reproductive organs

**Explanation:** In gymnosperms, male and female cones are formed that produce male and female gametes. The strobilus bearing microsporophylls and microsporangia are called microsporangia or male strobilus. The cones bearing megasporophylls with ovules or megasporangia are called microsporangia or female strobilus. So, the cone of gymnosperms represents the reproductive organs.

38.

**(d) Haploid**

**Explanation:** A dominant, independent, photosynthetic, thalloid, or erect phase of Bryophytes and pteridophytes is represented by a haploid gametophyte.

39. **(a) Gymnosperms**

**Explanation:** Gymnosperms have reproductive structure as cones i.e. Male and female.

40.

**(d) Gymnosperm**

**Explanation:** The different types of organisms classified as cryptogams and wherein our four kingdoms:

- **Kingdom Eubacteria:** Cyanobacteria (previously called blue-green algae).
- **Kingdom Protista:** Slime molds, green algae, other algal groups.
- **Kingdom Fungi:** Basidiomycota mushrooms and their close relatives, Ascomycota cup fungi and their close relatives, and lichen.
- **Kingdom Plantae:** Bryophytes (mosses, liverworts, and hornworts) and vascular cryptogams (ferns, horsetails, and club mosses).

41.

**(c) A gametophyte free-living structure formed in pteridophytes.**

**Explanation:** A gametophyte free-living structure formed in pteridophytes which is of short duration.

42.

**(b) Leaf apex**

**Explanation:** In sexual reproduction, the sex organs antheridia and archegonia are produced at the apex of the leafy shoots.

43.

**(c) Gametophyte and Capsule**

**Explanation:** Gametophytes and capsule are diploid structure and alternate with a haploid structure called spores by reduction division.

44. **(a) Naked seeds**

**Explanation:** The gymnosperms (Gymnos: naked, Sperma: seeds) are plants in which the ovules are not enclosed by any ovary wall and remain exposed, both before and after fertilization. The seeds that develop post-fertilization, are not covered, i.e., are naked. Since Cycas has naked seeds, it belongs to gymnosperms.

45.

**(b) Ginkgo**

**Explanation:** Ginkgo is a living fossil. This plant belongs to the gymnosperms division. It is considered as one of the oldest plants known and still surviving in some parts of the world.

46. **(a) Cycas**

**Explanation:** Cycas produces top-shaped multinucleate male gametes and mature seeds with one embryo having two cotyledons. Although, male and female gametes are generally uninucleate in gymnosperms.

47.

**(d) Cryptogams**

**Explanation:** The cryptogams are flowerless and seedless plants. They are simple plants like algae, mosses, and ferns which do not produce flowers, fruits, and seeds. Cryptogams are considered as lower plants.

48.

**(b) Sphagnum**

**Explanation:** Sphagnum is also known as peat moss as it provides peat that has long been used as fuel.

49. **(a) Independent and dominant sporophyte**

**Explanation:** In bryophytes, the dominant phase in the life cycle is the gametophytic plant body. However, in pteridophytes, the main plant body is a sporophyte which is differentiated into true root, stem and leaves.

50.

**(b) Sori**

**Explanation:** The yellow or brown spots which have sporangia in fern are called sori. Spores are produced inside these sporangia to produce haploid gametophyte.

51. (d) Mosses  
**Explanation:** The bryophytes are divided into liverworts and mosses so they are closely related to each other.

52. (b) Epiphytes  
**Explanation:** Epiphytes are dependent on other large plants for space or physical support. It remains to attach with other plants but does not obtain food or another nutrient from it so they are not parasitic on the supporting plants.

53. (c) Algae  
**Explanation:** Algae are chlorophyll-bearing, simple, thalloid, autotrophic plants with the simplest body organization. Their body is thallus like without true root, stem, and leaf differentiation.

54. (a) Holdfast  
**Explanation:** Angiosperms plants have roots to hold the soil and remain erect. Similarly, Rhodophytes have holdfast by which they remain attached with substratum to absorb water and minerals.

55. (a) Algae  
**Explanation:** Spirulina is a blue-green alga and It is one of the most potent nutrient sources of vitamins B-1(thiamine), B-2 (riboflavin), B-3(nicotinamide), B-6 (pyridoxine), B-9 (folic acid, vitamin C, vitamin D, vitamin A, and vitamin E. It is also a source of potassium, calcium, chromium, copper, iron, magnesium, manganese, phosphorus, selenium, sodium and zinc.

56. (a) Water  
**Explanation:** Most of the algae are aquatic, can be freshwater algae - Chlorophyceae or marine algae - Phaeophyceae and Rhodophyceae.

57. (c) Bryophytes  
**Explanation:** Bryophytes are also called amphibians of the plant kingdom because these plants can live in soil but are dependent on water for sexual reproduction.

58. (b) Pinus  
**Explanation:** Pinus belongs to division gymnosperms. In gymnosperms, seeds are formed but not inside the fruit. They are also called as plants with naked seeds.

59. (c) Bryophytes  
**Explanation:** Bryophytes are called amphibians of the plant kingdom as they can grow in both land and water. Water is essential for the completion of the life cycle as they release antherozoids into the water where they come in contact with archegonium to produce a zygote.

60. (d) Gymnosperm  
**Explanation:** Gymnosperm. It is the sole living species of genus Sequoia. Its common name includes redwood, California redwood. It is an evergreen, long-living monoecious tree.

61. (d) Oogamous  
**Explanation:** Oogamy is a form of anisogamy (heterogamy) in which the female gamete (e.g. egg cell) is significantly larger than the male gamete and is non-motile.

62. (b) Ovule  
**Explanation:** Megasporangium of seed plants is called an ovule. The ovule is present inside the ovary which becomes seed on maturation after fertilization. It produces megasporocytes or Megaspore mother cells that yield megasporangia.

63. (d) Salvinia

**Explanation:** Genera like Selaginella and Salvinia which produce two kinds of spores, macro (large) and micro (small) spores are known as heterosporous.

64. (a) Phaeophyceae

**Explanation:** The plant body of Phaeophyceae is attached to root-like holdfast, the stalk which is similar to stipe and frond which is similar to leaves.

65.

(d) Wind

**Explanation:** In Gymnosperms, cross-pollination is mainly accompanied by wind. The pollen grains are produced in large quantities and generally lighter.

66.

(d) Monera

**Explanation:** Cyanobacteria are classified under the kingdom Monera because they are unicellular with prokaryotic cells.

67. (a) Sequoia

**Explanation:** One of the gymnosperms, Giant sequoias are the world's largest single tree with an average height of 50 - 85 m (164 - 279 ft) and 6 - 8 m (20 - 26 ft) in diameter.

68. (a) Cedrus

**Explanation:** Unlike bryophytes and pteridophytes, in gymnosperms (Cedrus) the male and the female gametophytes do not have an independent free-living existence.

69. (a) (a)-iii, (b) - iv, (c) - ii, (d)- i

**Explanation:** (a)-iii, (b) - iv, (c) - ii, (d)- i

70.

(d) Cycas

**Explanation:** The sperms of male gamete of Cycas are the largest in the biological world. It is top-shaped. In *Cycas revoluta* the size of the sperm ranges between 180 to 210  $\mu\text{m}$  and they are clearly visible to the naked eye.

71.

(d) Chlamydomonas

**Explanation:** The algae present in the figure is Chlamydomonas which is a unicellular algae present in fresh water. Two flagella is attached to it that helps in the movement in water.

72.

(c) Cycas

**Explanation:** The plant shown in the figure is cycas that belongs to division Cycadophyta and family Cycadaceae. It is dioecious and Cycas circinalis species is endemic to India.

73. (a) Selaginella

**Explanation:** Selaginella belongs to class Lycopida and other plants (Dryopteris, Pteris, Adiantum) belong to class Pteropsida of Pteridophytes.

74.

(d) The algal component will survive while the fungal component will die.

**Explanation:** The algal component will survive while the fungal component will die. This symbiosis is more in the favour of fungal partner than the algal partner and is also termed as helotism, i.e., master and slave relationship where the fungus is the master and alga is a slave. When living together, both are benefitted from each other. The algal component does photosynthesis and provides food and fungal component anchors water which is an important raw material for photosynthesis.