

Solution

RELATIONS AND FUNCTIONS WS 1

Class 11 - Mathematics

1.

(c) $R \subseteq A \times B$

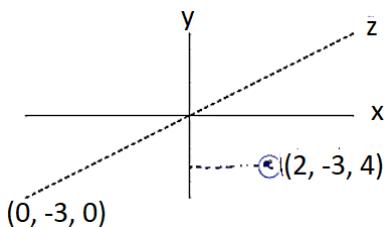
Explanation: Since, R is a relation from set A to set B , therefore it will always be a subset of $A \times B$.

2.

(d) $(0, -3, 0)$

Explanation:

for y -axis $x = 0, y = ?, z = 0$



3.

(d) $R - \{0\}$

Explanation: Since $\log x$ is defined for $x \geq 0$, therefore domain of $\log |x|$ is $R - \{0\}$

4.

(c) 8

Explanation: Since A has 3 elements and B has 2 elements, then number of functions from A to B is $2^3 = 8$

5.

(c) both one-one and onto

Explanation: $F(n) = \begin{cases} \frac{n-1}{2}, & \text{when } n \text{ is odd;} \\ \frac{-n}{2}, & \text{when } n \text{ is even} \end{cases}$

one - one : Let $n_1, n_2 \in \mathbb{N}$

Case I: n_1 is even, n_2 is even

$$\therefore f(n_1) - f(n_2) \Rightarrow \frac{-n_1}{2} = \frac{-n_2}{2} \Rightarrow n_1 = n_2$$

Case II: n_1 is odd, n_2 is odd

$$\therefore f(n_1) - f(n_2) \Rightarrow \frac{-n_1-1}{2} = \frac{-n_2-1}{2} \Rightarrow n_1 = n_2$$

Case III: n_1 is even, n_2 is odd

$$\therefore f(n_1) - \frac{-n_1}{2} = \text{even as } n_1 \text{ is even}$$

$$\therefore f(n_2) \text{ is odd, } \frac{n_2-1}{2} = \text{even as } n_2 \text{ is odd}$$

But $f(n_1)$ takes values, $-1, -2, -3, \dots$ $f(n^2)$ take values, $0, 1, 2, 3, \dots$

$$\therefore n_1 \neq n_2 \Rightarrow f(n_1) \neq f(n_2)$$

Similarly n_1 is odd, n_2 is even, then $\therefore n_1 \neq n_2 \Rightarrow f(n_1) \neq f(n_2)$

$\Rightarrow f$ is one - one

onto: $f(n) = \begin{cases} \frac{n-1}{2}, & \text{when } n \text{ is odd;} \\ \frac{-n}{2}, & \text{when } n \text{ is even} \end{cases}$

$$\therefore f(1) = 0, f(2) = 1, f(5) = 2, f(7) = 3, f(9) = 4, \dots f(2) = -1, f(4) = -2, f(6) = -3, f(8) = -4, \dots$$

\therefore Range of $f = \{\dots, -2, -1, 0, 1, 2, 3, \dots\} = \mathbb{Z}$

$\therefore f$ is onto

6. **(a)** ϕ

Explanation: For function to be defined,

$$\frac{x-2}{x+2} \geq 0, x \neq -2$$

$$x \in (-\infty, -2) \cup [2, \infty) \dots (1)$$

and $\frac{1-x}{1+x} \geq 0, x \neq -1$

$$\frac{x-1}{x+1} \leq 0$$

$$x \in (-1, 1] \dots (2)$$

Taking common of both the solutions we get $x \in \phi$

7.

(d) 0.5

Explanation: $e^{f(x)} = \frac{10+x}{10-x}$

$$f(x) = \ln\left(\frac{10+x}{10-x}\right)$$

$$f(x) = k \ln\left(\frac{200x}{100+x^2}\right)$$

$$\ln\left(\frac{10+x}{10-x}\right) = k \ln\left(\frac{10+\frac{200x}{100+x^2}}{10-\frac{200x}{100+x^2}}\right)$$

$$\ln\left(\frac{10+x}{10-x}\right) = k \ln\left(\frac{1000+10x^2+200x}{1000+10x^2-200x}\right)$$

$$= k \ln\left(\frac{100+x^2+20x}{100+x^2-20x}\right)$$

$$\ln\left(\frac{10+x}{10-x}\right) = k \ln\left(\frac{10+x}{10-x}\right)^2$$

$$\ln\left(\frac{10+x}{10-x}\right) = \ln\left(\frac{10+x}{10-x}\right)^{2k}$$

$$2k = 1$$

$$k = 1/2$$

$$= 0.5$$

8.

(b) $[-3, -2] \cup [2, 3]$

Explanation: $5|x| - x^2 - 6 \geq 0$

$$x^2 - 5|x| + 6 \leq 0$$

$$(|x| - 2)(|x| - 3) \leq 0$$

$$\text{So, } |x| \in [2, 3]$$

Therefore, $x \in [-3, -2] \cup [2, 3]$

9. **(a) $\{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 2), (2, 3)\}$**

Explanation: $R = \{(x, y) : |x^2 - y^2| < 7\}$

$$R = \{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 2), (2, 3)\}$$

10.

(b) $2|x|$

Explanation: $f(2x) = 2(2x) + |2x| = 4x + 2|x|$

$$f(-x) = 2(-x) + |-x|$$

$$f(2x) + f(-x) - f(x) = 4x + 2|x| - 2x + |-x| - (2x + |x|)$$

$$= 4x + 2|x| - 2x + |x| - 2x - |x| = 2|x|$$

11.

(c) None of these

Explanation: $f(x) = \cos(\log x)$

$$\text{Now, } f(x^2) f(y^2) - \frac{1}{2} \left\{ f\left(\frac{x^2}{y^2}\right) + f(x^2 y^2) \right\}$$

$$= \cos(\log x^2) \cos(\log y^2) - \frac{1}{2} \left\{ \cos\left(\log\left(\frac{x^2}{y^2}\right)\right) + \cos(\log x^2 y^2) \right\}$$

$$= \cos(2 \log x) \cos(2 \log y) - \frac{1}{2} \left\{ \cos(\log x^2 - \log y^2) + \cos(\log x^2 + \log y^2) \right\}$$

$$= \cos(2 \log x) \cos(2 \log y) - \frac{1}{2} \{ \cos(2 \log x - 2 \log y) + \cos(2 \log x + \log y) \}$$

$$\text{using } \cos x \cos y = \frac{1}{2} \cos(x + y) + \cos(x - y)$$

$$= \cos(2 \log x) \cos(2 \log y) - \cos(2 \log x) \cos(2 \log y)$$

$$= 0$$

12.

(b) $\{-1, 1\}$

Explanation: We have $f(x) = \frac{x+2}{|x+2|}$

when $x > -2$,

$$f(x) = \frac{x+2}{x+2} = 1$$

When $x < -2$

$$\text{We have } = \frac{x+2}{-(x+2)} = -1$$

$$R(f) = \{-1, 1\}$$

13.

(b) $\{\cos 1, \cos 2, 1\}$

Explanation: When $-2 < x < -1$

$$[x] = -2$$

$$f(x) = \cos[x] = \cos(-2)$$

$$= \cos 2$$

for $-1 < x < 0$

$$[x] = -1$$

$$f(x) = \cos[x]$$

$$= \cos(-1)$$

$$= \cos 1$$

for $0 < x < 1$

$$[x] = 0$$

$$f(x) = \cos 0 = 1$$

$$[x] = 1$$

$$f(x) = \cos 1$$

Therefore, $R(f) = \{1, \cos 1, \cos 2\}$

14.

(d) none of these

Explanation: $f(x) = x + \frac{1}{x}$

Range of the function can be given by putting values of x and find y .

x	-3	-2	-1	1	2	3
y	-3.33	-2.5	-2	2	2.5	3.33

graph for the above function is



It is clear from the graph that the Range of the function is

$$(-\infty, -2] \cup [2, \infty), \{y | y \leq -2, y \geq 2\}$$

15. **(a)** $\{-1, 1\}$

Explanation: We know that

$$|x| = -x \text{ in } (-\infty, 0) \text{ and } |x| = x \text{ in } [0, \infty)$$

$$\text{So, } f(x) = \frac{x}{-x} = -1 \text{ in } (-\infty, 0)$$

$$\text{And } f(x) = \frac{x}{x} = 1 \text{ in } (0, \infty)$$

As clearly shown above $f(x)$ has only two values 1 and -1

So, range of $f(x) = \{-1, 1\}$

16.

(c) $i \neq 1$

Explanation: We have $x \neq y$ given by, $|x| = y$

$i \neq 1$
 $x = i$;
 $|x| = \sqrt{1^2}$
 $= 1$
 $1 = 1$
 $|x| = y$.

17.

(b) 0

Explanation: $f(x) = \cos(\log_e x)$

$$\begin{aligned}
 & \text{Now, } f\left(\frac{1}{x}\right) f\left(\frac{1}{y}\right) - \frac{1}{2} \left\{ f(xy) + f\left(\frac{x}{y}\right) \right\} \\
 &= \cos(\log_e \frac{1}{x}) \cos(\log_e \frac{1}{y}) - \frac{1}{2} \left\{ \cos(\log_e xy) + \cos\left(\log_e \frac{x}{y}\right) \right\} \\
 &= \cos(-\log_e x) \cos(-\log_e y) - \frac{1}{2} \{ \cos[(\log_e x) + \cos(\log_e y)] + \cos[\log_e x - \log_e y] \} \\
 &= \cos(\log_e x) \cos(\log_e y) - \cos(\log_e x) \cos(\log_e y) \text{ [using } \cos x \cos y = \frac{1}{2} (\cos(x+y) + \cos(x-y)) \text{]} \\
 &= 0
 \end{aligned}$$

18.

(b) [3/4, 1]

Explanation: $f(x) = \sin^4 x + 1 - \sin^2 x$

$$f(x) = \sin^4 x - \sin^2 x + \frac{1}{4} - \frac{1}{4} + 1$$

$$f(x) = (\sin^2 x - \frac{1}{2})^2 + \frac{3}{4}$$

$$(\sin^2 x - \frac{1}{2})^2 \geq 0$$

Minimum value of $f(x) = 3/4$

$$0 < \sin^2 x < 1$$

$$\text{So, maximum value of } f(x) = (1 - \frac{1}{2})^2 + \frac{3}{4}$$

$$= \frac{1}{4} + \frac{3}{4}$$

$$= 1$$

$$R(f) = [3/4, 1]$$

19.

(c) $A \times B = \{(1, a), (1, b), (2, a), (2, b)\}$

Explanation: The set of all ordered pairs (a, b) such that $a \in A$ and $b \in B$ is called cartesian product of sets A and B.

$$\therefore A \times B = \{(1, a), (1, b), (2, a), (2, b)\}$$

20. **(a) an equivalence relation**

Explanation: Let T be the set of all triangles in the Euclidean plane with R, a relation in T is given by $R = \{(T_1, T_2) : T_1$ is congruent to $T_2\}$

$(T_1, T_2) \in R$ if T_1 is congruent to T_2 .

Reflexivity: $T_1 \cong T_1 \Rightarrow (T_1, T_1) \in R$.

Symmetry: $(T_1, T_2) \in R \Rightarrow T_1 \cong T_2 \Rightarrow T_2 \cong T_1 \Rightarrow (T_2, T_1) \in R$.

Transitivity: $(T_1, T_2) \in R$ and $(T_2, T_3) \in R$.

$$\Rightarrow T_1 \cong T_2 \text{ and } T_2 \cong T_3 \Rightarrow T_1 \cong T_3 \Rightarrow (T_1, T_3) \in R$$

Therefore, R is an equivalence relation.

21.

(d) $2^{mn} - 1$

Explanation: We have, $n(A) = m$ and $n(B) = n$

$$n(A \times B) = n(A) \cdot n(B) = mn$$

Total number of relation from A to B = Number of subsets of $A \times B = 2^{mn}$

$$\text{So, total number of non-empty relations} = 2^{mn} - 1$$

22.

(d) 2^{16}

Explanation: No. of elements in the set $A = 4$. Therefore, the no. of elements in $A \times A = 4 \times 4 = 16$. As, the no. of relations in $A \times A$ = no. of subsets of $A \times A = 2^{16}$.

23.

(d) $\frac{1}{\sqrt{2}}$

Explanation: $\frac{1}{\sqrt{2}}$

24. **(a)** ϕ

Explanation: Here, $A = \{x \in R : x < 0\} \subseteq \text{co-domain}$

$f^{-1}(A)$ Contains those elements in $R(\text{domain})$ whose image is negative.

Since, $f(x) = |x|$

\therefore no image of any elements of $R(\text{domain})$ is negative

$\therefore f^{-1}(A) = \phi$

25.

(d) $\frac{1}{x}$

Explanation: We have $f(x) = \frac{x-1}{x+1}$ then

$$\begin{aligned} f\left(\frac{1}{f(x)}\right) &= \frac{\frac{1}{f(x)} - 1}{\frac{1}{f(x)} + 1} = \frac{1-f(x)}{1+f(x)} \\ &= \frac{1 - \frac{x-1}{x+1}}{1 + \frac{x-1}{x+1}} = \frac{x+1-x+1}{x+1+x-1} = \frac{2}{2x} = \frac{1}{x} \end{aligned}$$

26. **(a)** an equivalence relation

Explanation: Given Relation $R = \{(1, 1), (2, 2), (3, 3)\}$

Reflexive: If a relation has $\{(a, b)\}$ as its element, then it should also have $\{(a, a), (b, b)\}$ as its elements too.

Symmetric: If a relation has (a, b) as its element, then it should also have (b, a) as its element too.

Transitive: If a relation has $\{(a, b), (b, c)\}$ as its elements, then it should also have $\{(a, c)\}$ as its element too.

Now, the given relation satisfies all these three properties.

Therefore, its an equivalence relation.

27.

(b) $(0, \infty)$

Explanation: $f(x) = a^x$, where $a > 0$

Case 1: When $x < 0$, then a^x lies between $(0, 1)$

Case 2: When $x \geq 0$, then $a^x \geq 1$

Union of above two cases, gives us the Range as $(0, \infty)$

28. **(a)** symmetric

Explanation: A relation R on a non empty set A is said to be symmetric if $xRy \Leftrightarrow yRx$, for all $x, y \in R$. Clearly, $x^2 + y^2 = 1$ is same as $y^2 + x^2 = 1$ for all $x, y \in R$. Therefore, R is symmetric.

29.

(c) $\left[0, \frac{2}{3}\right]$

Explanation: $f(x) = \cos^{-1}(3x - 1)$

The domain for function $\cos^{-1} x$ is $[-1, 1]$ and range is $[0, \pi]$

When a function is multiplied by an integer, the domain of the function is decreased by the same number.

So, domain of $\cos^{-1} x$ is $[-1, 1]$

Multiply function by 3

\Rightarrow domain of $\cos^{-1} 3x$ is $\left[\frac{-1}{3}, \frac{1}{3}\right]$

\Rightarrow domain of $\cos^{-1}(3x - 1)$ is $\left[\frac{1}{3} - \frac{1}{3}, \frac{1}{3} + \frac{1}{3}\right]$ i.e. $\left[0, \frac{2}{3}\right]$

30.

(c) four points

Explanation: We will solve equations in A and B simultaneously and find values of x and y. The no. of possible ordered pairs from these values will be elements in $A \cap B$.

Now, From B, $x^2 + 9y^2 + y^2 = 144$ and

From A, $x^2 + y^2 = 25$

$$\therefore 9y^2 + 25 = 144 \Rightarrow 9y^2 = 119$$

$$\Rightarrow y = \pm \sqrt{\frac{119}{9}}$$

$$\therefore x^2 + y^2 = 25 \Rightarrow x^2 = 25 - \frac{119}{9} = \frac{106}{9}$$

$$\Rightarrow x = \pm \sqrt{\frac{106}{9}}$$

\therefore x has two values, y has two values

\therefore possible ordered pairs = 4

$\therefore A \cap B$ has 4 elements

31.

(d) {(8,11), (10,13)}

Explanation: Since, $y = x - 3$;

Therefore, for $x = 11$, $y = 8$.

For $x = 12$, $y = 9$. [But the value $y = 9$ does not exist in the given set.]

For $x = 13$, $y = 10$.

So, we have $R = \{(11, 8), (13, 10)\}$

Now, $R^{-1} = \{(8, 11), (10, 13)\}$.

32.

(b) 3

Explanation: $f(x) = \frac{x+1}{x-1}$

$$f(f(x)) = \frac{f(x)+1}{f(x)-1} = \frac{\frac{x+1}{x-1} + 1}{\frac{x+1}{x-1} - 1}$$

$$= \frac{x+1+x-1}{x+1-x+1} = \frac{2x}{2} = x$$

$$f(f(f(x))) = f(x) = \frac{x+1}{x-1}$$

$$f(f(f(2))) = \frac{2+1}{2-1}$$

$$= 3$$

33.

(d) Domain = $R - \{4\}$, Range = $\{-1\}$

Explanation: We have, $f(x) = \frac{4-x}{x-4} = -1$, for $x \neq 4$

34.

(d) 3 $f(x)$

Explanation: $f(g(x)) = \log\left(\frac{1+g(x)}{1-g(x)}\right)$

$$= \log\left(\frac{1+\frac{3x+x^2}{1+3x^2}}{1-\frac{3x+x^2}{1+3x^2}}\right)$$

$$= \log\left(\frac{1+3x^2+3x+x^3}{1+3x^2-3x-x^3}\right)$$

$$= \log\left(\frac{1+x}{1-x}\right)^3 = 3 \log\left(\frac{1+x}{1-x}\right)$$

$$f(g)(x) = 3f(x)$$

35.

(b) {1}

Explanation: As per condition of the relation, $x > y$.

So, required relation will be : $\{(2, 1), (3, 1)\}$

Since we know that Range is the set of elements written after comma in each ordered pair.

Therefore, Range = {1}

36.

(d) 0**Explanation:** Since $f(x) = x^3 - \frac{1}{x^3}$

$$f\left(\frac{1}{x}\right) = \frac{1}{x^3} - \frac{1}{\frac{1}{x^3}} = \frac{1}{x^3} - x^3$$

$$\text{Hence, } f(x) + f\left(\frac{1}{x}\right) = x^3 - \frac{1}{x^3} + \frac{1}{x^3} - x^3 = 0$$

37.

(c) 2^{mn} **Explanation:** We have $n(A) = m$, $n(B) = n$. \therefore Number of relations defined from A to B

$$= \text{number of possible subsets of } A \times B = 2^{n(A \times B)} = 2^{mn}$$

38.

(d) $\{1, -1\}$ **Explanation:** When $-4 < x < 0$

$$\begin{aligned} f(x) &= -\frac{x}{x} \\ &= -1 \end{aligned}$$

When $0 < x < 4$

$$\begin{aligned} f(x) &= x/x \\ &= 1 \end{aligned}$$

$$R(f) = \{-1, 1\}$$

39.

(b) $f(\pi/2) = 1$ **Explanation:** $f\left(\frac{\pi}{2}\right) = \sin 9\left(\frac{\pi}{2}\right) - \sin 10\left(\frac{\pi}{2}\right)$

$$= 1 - 0$$

$$= 1$$

40. **(a) 60 percent****Explanation:** Let A denote the set of persons traveling by car, B denotes the set of persons traveling by bus, then

$$n(A) = 20, n(B) = 50, n(A \cap B) = 10$$

$$\therefore n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

$$= 20 + 50 - 10 = 60$$

41. **(a) {b, c}****Explanation:** Since the range is represented by the y- coordinate of the ordered pair (x, y). Therefore, the range of the given relation is {b, c}.

42.

(b) transitive but not symmetric**Explanation:** Consider the non - empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is not symmetric, because aRb means a is brother of b, then, it is not necessary that b is also brother of a , it can be the sister of a. Therefore, bRa is not true. Therefore, the relation is not symmetric . Again, if aRb and bRc is true, then aRc is also true. Therefore, R is transitive only.

43.

(c) $(-\infty, -1) \cup (1, 4]$ **Explanation:** We have, $f(x) = \sqrt{4 - x} + \frac{1}{\sqrt{x^2 - 1}}$ $f(x)$ is defined if $4 - x \geq 0$ and $x^2 - 1 > 0$

$$\Rightarrow x - 4 \leq 0 \text{ and } (x + 1)(x - 1) > 0$$

$$\Rightarrow x \leq 4 \text{ and } (x < -1 \text{ or } x > 1)$$

$$\therefore \text{Domain of } f = (-\infty, -1) \cup (1, 4]$$

44.

(d) 0

Explanation: Because the no. of elements in domain i.e. in A is less than the no. of elements in co-domain i.e. in B. Therefore, no bijection mapping is possible.

45.

(d) Symmetric but neither reflexive nor transitive.

Explanation: The relation R is symmetric only, because if L_1 is perpendicular to L_2 , then L_2 is also perpendicular to L_1 , but no other cases that is reflexive and transitive is not possible.

46. **(a)** $(-\infty, -1] \cup \left[\frac{1}{3}, \infty\right)$

Explanation: We know that, $-1 \leq \cos x \leq 1$

$$\Rightarrow -1 \leq -\cos x \leq 1$$

$$\Rightarrow -2 \leq -2 \cos x \leq 2$$

$$\Rightarrow -1 \leq 1 - 2 \cos x \leq 3$$

Now $f(x) = \frac{1}{1-2 \cos x}$ is defined if

$$-1 \leq 1 - 2 \cos x < 0 \text{ or } 0 < 1 - 2 \cos x \leq 3$$

$$\Rightarrow -1 \geq \frac{1}{1-2 \cos x} > -\infty \text{ or } \infty > \frac{1}{1-2 \cos x} \geq \frac{1}{3}$$

$$\Rightarrow \frac{1}{1-2 \cos x} \in (-\infty, -1] \cup \left[\frac{1}{3}, \infty\right)$$

47.

(c) $\{(x, y) : x, y \in R, y^2 = x\}$

Explanation: A function is said to exist when we get a unique value for any value of x.

Here, $y^2 = x$ is not a function as for each value of x, we will get 2 values of y which violates the definition of a function.

48. **(a)** $(-3, -2) \cup (-2, -1) \cup (1, \infty)$

Explanation: Given function is $f(x) = \log_{3+x}(x^2 - 1)$

It is obvious that $f(x)$ is defined when $x^2 - 1 > 0$, $3 + x > 0$ and $3 + x \neq 1$.

$$\text{Now, } x^2 - 1 > 0 \Rightarrow x^2 > 1$$

$$\Rightarrow x < -1 \text{ or } x > 1$$

$$3 + x > 0 \Rightarrow x > -3$$

$$3 + x \neq 1 \Rightarrow x \neq -2$$

Therefore, domain of the function $f(x) = (-3, -2) \cup (-2, -1) \cup (1, \infty)$

49.

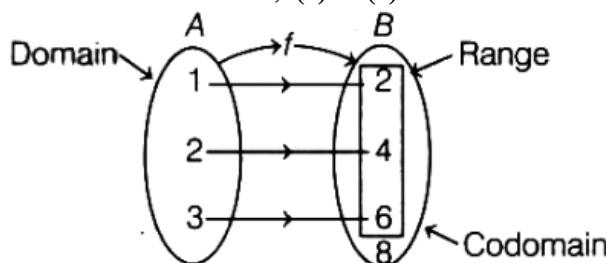
(c) $\{2, 4, 6\}$

Explanation: Given, $f(x) = 2x, \forall x \in A$

Value of function at $x = 1$, $f(1) = 2(1) = 2$

Value of function at $x = 2$, $f(2) = 2(2) = 4$

Value of function at $x = 3$, $f(3) = 2(3) = 6$



We Can write it as $f = \{(1, 2), (2, 4), (3, 6)\}$

\therefore Range of $f = \{2, 4, 6\}$

50.

(c) none of these

Explanation: Given set $A = \{1, 2, 3, 4, 5\}$ and relation $R = \{(a, b) : |a^2 - b^2| < 16\}$

According to the condition $|a^2 - b^2| < 16$:

$\Rightarrow R = \{(1, 1), (1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 1), (2, 3), (2, 2), (3, 2), (4, 2), (2, 4), (3, 3), (4, 3), (5, 4), (3, 4), (4, 4), (5, 5)\}$. Which is the required solution.

51.

(c) $\{(3, 8), (6, 6), (9, 4), (12, 2)\}$

Explanation: Given that, $2a + 3b = 30$

$$\Rightarrow 3b = 30 - 2a$$

$$\Rightarrow b = \frac{30 - 2a}{3}$$

For $a = 3, b = 8$

$$a = 6, b = 6$$

$$a = 9, b = 4$$

$$a = 12, b = 2$$

$$\therefore R = \{(3, 8), (6, 6), (9, 4), (12, 2)\}$$

52.

(c) $\left\{-\frac{1}{2}\right\}$

Explanation: $f : [-2, 2] \rightarrow R$ is defined by

$$f(x) = \begin{cases} -1, & -2 \leq x \leq 2 \\ x - 1, & 0 \leq x \leq 2 \end{cases}$$

Let $x \leq 0$ and $f(|x|) = x$

$$\text{Now, } f(|x|) = x \Rightarrow |x| - 1 = x$$

$$\Rightarrow -x - 1 = x \quad [\because |x| \geq 0]$$

$$\Rightarrow -x - 1 = x \quad (\text{as } x \leq 0)$$

$$\Rightarrow 2x = -1 \Rightarrow x = -\frac{1}{2}$$

$$\therefore \{x \in [-2, 2] : x \leq 0 \text{ and } f(|x|) = x\} = \left\{-\frac{1}{2}\right\}$$

53.

(c) 2^{n^2}

Explanation: A is a set of n elements.

$A \times A$ will have a total of n^2 elements.

Then, the number of relations on A will be 2^{n^2}

54.

(c) $R - \{3\}, \{1, -1\}$

Explanation: The given function is $f(x) = \frac{|x-3|}{x-3}$

This function is well defined for all real numbers other than 3.

\therefore Its domain is $R - \{3\}$

$$\text{Now, } f(x) = \frac{|x-3|}{x-3}$$

$$= \begin{cases} \frac{x-3}{x-3} : x > 3 \\ \frac{-(x-3)}{x-3} : x < 3 \end{cases} = \begin{cases} 1 : x > 3 \\ -1 : x < 3 \end{cases}$$

\Rightarrow Range of function f is $\{1, -1\}$

55. **(a)** reflexive, symmetric and transitive

Explanation: By definition of Equivalence Relation, a relation is said to be equivalence if it is reflexive, symmetric and transitive.

56. **(a)** $f(\alpha) = f(\beta) = -9$

Explanation: $f(x) = 64x^3 + \frac{1}{x^3}$

$$= \left(4x + \frac{1}{x}\right)^3 - 3(4x)\left(\frac{1}{x}\right)\left(4x + \frac{1}{x}\right)$$

Since, $4x + \frac{1}{x} = 3$ and α and β are its roots,

$$f(x) = 3^3 - 12(3)$$

$$= 27 - 36$$

$$= -9$$

$$\text{so, } f(\alpha) = f(\beta) = -9$$

57. **(a)** $(6, 8) \in R$

Explanation: $(6, 8) \in R$

as $b - 2 = 8 - 2 = 6$ and $b > 6$.

58.

(c) $A \times (B \cup C)$ **Explanation:** $A \times (B \cup C) = (A \times B) \cup A \times C$

$$= \{a, b\} \times \{c, d\} \cup \{a, b\} \times \{d, c\}$$

$$= \{(a, c), (a, d), (b, c), (b, d)\} \cup \{(a, d), (a, c), (b, d), (b, c)\}$$

$$= \{(a, c), (a, d), (a, c), (b, c), (b, d), (b, e)\}$$

59.

(c) None of these**Explanation:** $f(x) = \cos(\log x)$

$$\text{Now, } f(x)f(y) - \frac{1}{2} \left\{ f\left(\frac{x}{y}\right) + f(xy) \right\}$$

$$= \cos(\log x)\cos(\log y) - \frac{1}{2} \left\{ \cos\left(\log\left(\frac{x}{y}\right)\right) + \cos(\log xy) \right\}$$

$$= \cos(\log x)\cos(\log y) - \frac{1}{2} \{ \cos(\log x - \log y) + \cos(\log x + \log y) \}$$

$$\text{using } \cos x \cos y - \frac{1}{2} (\cos(x+y) + \cos(x-y))$$

$$= 0$$

60.

(d) {8, 27}**Explanation:** Given, $R = \{[a, a^3] : a \text{ is a prime number less than } 5\}$

$$\Rightarrow R = \{(2, 8), (3, 27)\}$$

Hence, range of $R = \{8, 27\}$.61. **(a)** $(1, \infty)$ **Explanation:** $f(x) = e^{\sqrt{x^2-1}} \cdot \log(x-1)$

Domain of the function is defined for

$$x-1 > 0 \text{ and } x^2 - 1 \geq 0$$

$$\Rightarrow x > 1 \Rightarrow x^2 \geq 1$$

$$\Rightarrow -1 \leq x \geq 0$$

the intersection of above two equations gives $(1, \infty)$ Therefore, domain of $f(x)$ is $(1, \infty)$

62.

(b) $(-\infty, 1] \cup [2, \infty)$ **Explanation:** $\because f : R \rightarrow R$ defined by

$$f(x) = \sqrt{x^2 - 3x + 2}$$

$$\text{Here, } x^2 - 3x + 2 \geq 0$$

$$(x-1)(x-2) \geq 0$$

$$x \leq 1 \text{ or } x \geq 2$$

$$\therefore \text{Domain of } f = (-\infty, 1] \cup [2, \infty)$$

63.

(c) Domain = $[1, \infty)$, Range = $[0, \infty)$ **Explanation:** We have, $f(x) = \sqrt{x-1}$ Clearly, $f(x)$ is defined if $x-1 \geq 0$

$$\Rightarrow x \geq 1$$

$$\therefore \text{Domain of } f = [1, \infty)$$

Now for $x \geq 1, x-1 \geq 0$

$$\Rightarrow \sqrt{x-1} \geq 0$$

$$\Rightarrow \text{Range of } f = [0, \infty)$$

64. **(a)** $R \subseteq A \times B$ **Explanation:** Let A and B be two sets. Then a relation R from set A to set B is a subset of $A \times B$. Thus, R is a relation from A to $B \Leftrightarrow R \subseteq A \times B$.65. **(a)** 0**Explanation:** $f(x) = \cos(\log x)$

$$\text{Now, } f(x)f(4) - \frac{1}{2} \left\{ f\left(\frac{x}{4}\right) + f(4x) \right\}$$

$$\begin{aligned}
&= \cos(\log x) \cos(\log 4) - 1/2 \left\{ \cos\left(\frac{x}{4}\right) + \cos(\log 4x) \right\} \\
&= \cos(\log x) \cos(\log 4) - \frac{1}{2} \{ \cos(\log x - \log 4) + \cos(\log x + \log 4) \} \\
&\text{Using } \cos x \cos y = 1/2 (\cos(x+y) + \cos(x-y)) \\
&= \cos(\log x) \cos(\log 4) - \cos(\log x) \cos(4) \\
&= 0
\end{aligned}$$

66.

(d) -1

Explanation: $g(f(e)) + f(g(\pi)) = g(f(e)) + f(g(\pi))$
 $= g(1) + f(-1) \quad \{ \because e \text{ is irrational and } \pi \text{ is rational} \}$
 $= -1 + 0 = -1$

67.

(d) reflexive

Explanation: Any relation R is reflexive if xRx for all $x \in R$. Here, $(a, a), (b, b), (c, c) \in R$. Therefore, R is reflexive.

68.

(d) $[0, \infty)$

Explanation: A modulus function always gives a positive value
 $R(f) = [0, \infty)$

69. **(a)** $R - \{-1/2, 1\}$

Explanation: Let $y = \frac{x^2 - x}{x^2 + 2x}$

$$y(x^2 + 2x) = x^2 - x$$

$$yx(x+2) = x(x-1)$$

$$y(x+2) = x-1$$

$$x(y-1) = -(1+2y)$$

$$x = -\frac{(1+2y)}{y-1}$$

Value of x can't be zero or it cannot be defined. Therefore,

$y = 1, -1/2$ are not possible.

So, range = $R - \{-1/2, 1\}$

70.

(d) $\{2, 4, 6\}$

Explanation: As xRy if $x + 2y = 8$, therefore, domain of the relation R is given by $x = 8 - 2y \in \mathbb{N}$. When $y = 1, \Rightarrow x = 6$, when $y = 2, \Rightarrow x = 4$, when $y = 3, \Rightarrow x = 2$. Therefore, domain is $\{2, 4, 6\}$.

71.

(b) reflexive and symmetric but not transitive.

Explanation: Reflexive: since $1 + a^2 > 0 \quad \forall a \in S$

$$\Rightarrow 1 + a, a > 0 \quad \forall a \in S \Rightarrow (a, a) \in R \quad \forall a$$

$\Rightarrow R$ is reflexive.

Symmetric: Let $a, b \in S$ Such that $(a, b) \in R$, then,

$$1 + ab > 0 \Rightarrow 1 + ba > 0 \Rightarrow (b, a) \in R$$

$\Rightarrow R$ is symmetric.

Transitivity: Here $1 + 1.2 = 1 + 2 = 3 > 0$

$$\Rightarrow 1 + (-2)(-3) = 1 + 6 = 7 > 0$$

$$\Rightarrow (1, 2), (-2, -3) \in R$$

$$\text{Now, } 1 + 1(-3) = 1 - 3 = -2 < 0$$

$$\therefore (1, -3) \notin R$$

$\therefore R$ is not a transition.

72.

(d) R and R

Explanation: $f(x) = x^3$

$f(x)$ can assume any value, so domain of $f(x)$ is R

The Range of the function can be positive or negative Real numbers, as the cube of any number depends on the sign of the number, So Range of $f(x)$ is \mathbb{R}

73.

(d) $\{(x, y) : y = |x|, x, y \in \mathbb{R}\}$

Explanation: A function is said to exist when we get a unique value of y for any value of x . If we get 2 values of y for any value of x , then it is not a function.

74. **(a)** two points

Explanation: From A, $x^2 + y^2 = 5$ and from B, $2x = 5y$

$$\text{Now, } 2x = 5y \Rightarrow x = \frac{5}{2y}$$

$$\therefore x^2 + y^2 = 5 \Rightarrow \left(\frac{5}{2y}\right)^2 + y^2 = 5$$

$$\Rightarrow 29y^2 = 20 \Rightarrow y = \pm \sqrt{\frac{20}{29}}$$

$$\Rightarrow 29y^2 = 20 \Rightarrow y = \pm \sqrt{\frac{20}{29}}$$

$$\therefore x = \frac{5}{2}(\pm \sqrt{\frac{20}{29}})$$

\therefore Possible ordered pairs = four

But two ordered pair in which x is positive and y is negative will be rejected as it will not be satisfied by the equation in B. Therefore,

$A \cap B$ contains 2 elements.

75. **(a)** $[-1, 1] - \{0\}$

Explanation: $f(x) = \frac{\sin^{-1} x}{x}$

Domain of the function is defined for $x \neq 0$

Domain of $\sin^{-1} x$ is $[-1, 1]$

Therefore, domain of $f(x)$ is $[-1, 1] - \{0\}$