

RELATIONS AND FUNCTIONS WS 1

Class 11 - Mathematics

1. Let R be a relation from a set A to a set B , then [1]
 - a) $R = A \cup B$
 - b) $R \subseteq B \times A$
 - c) $R \subseteq A \times B$
 - d) $R = A \cap B$
2. The coordinates of the foot of the perpendicular drawn from the point $(2, -3, 4)$ on the y -axis is: [1]
 - a) $(2, 0, 4)$
 - b) $(2, 3, 4)$
 - c) $(-2, -3, -4)$
 - d) $(0, -3, 0)$
3. The domain of definition of the function $f(x) = \log |x|$ is [1]
 - a) R
 - b) $(0, \infty)$
 - c) $(-\infty, 0)$
 - d) $R - \{0\}$
4. If $A = \{1, 2, 3\}$, $B = \{x, y\}$ Then the number of functions that can be defined from A into B is [1]
 - a) 12
 - b) 6
 - c) 8
 - d) 3
5. A function f from the natural numbers to the set of integers defined by $f(n) = \begin{cases} \frac{n-1}{2}, & \text{when } n \text{ is odd} \\ -\frac{n}{2}, & \text{when } n \text{ is even} \end{cases}$ is [1]
 - a) neither one-one nor onto
 - b) onto but not one-one
 - c) both one-one and onto
 - d) one-one but not onto
6. The domain of definition of the function $f(x) = \sqrt{\frac{x-2}{x+2}} + \sqrt{\frac{1-x}{1+x}}$ is [1]
 - a) ϕ
 - b) $[1, -1]$
 - c) $[-1, 1]$
 - d) $(-\infty, -2] \cup [2, \infty)$
7. If $e^{f(x)} = \frac{10+x}{10-x}$, $x \in (-10, 10)$ and $f(x) = k \ln \left(\frac{200x}{100+x^2} \right)$ Then $k =$ [1]
 - a) 0.8
 - b) 0.6
 - c) 0.7
 - d) 0.5
8. The domain of the function $f(x) = \sqrt{5|x| - x^2 - 6}$ is [1]
 - a) $[-3, -2) \cup [2, 3)$
 - b) $[-3, -2] \cup [2, 3]$
 - c) $[3, -2] \cup [2, -3]$
 - d) $(-3, 2) \cup (2, 3)$
9. The relation R defined on the set $A = \{1, 2, 3, 4, 5\}$ by $R = \{(a, b) : |a^2 - b^2| < 7\}$ is given by [1]
 - a) $\{(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (1, 2), (2, 3)\}$
 - b) $\{(3, 3), (4, 3), (5, 4), (3, 4)\}$

c) $\{(1, 1), (2, 1), (3, 1), (4, 1), (2, 3)\}$ d) $\{(2, 2), (3, 2), (4, 2), (2, 4)\}$

10. Let, $f : R \rightarrow R$ be defined by $f(x) = 2x + |x|$ Then $f(2x) + f(-x) - f(x) =$ [1]

a) $-2|x|$ b) $2|x|$
 c) $-2x$ d) $2x$

11. If $f(x) = \cos(\log x)$ then $f(x^2)f(y^2) - \frac{1}{2} \left\{ f\left(\frac{x^2}{y^2}\right) + f(x^2y^2) \right\}$ has the value [1]

a) -1 b) -2
 c) None of these d) $1/2$

12. The range of the function $f(x) = \frac{x+2}{|x+2|}$, $x \neq -2$ is [1]

a) $\{1\}$ b) $\{-1, 1\}$
 c) $(0, \infty)$ d) $\{-1, 0, 1\}$

13. The range of $f(x) = \cos[x]$, for $-\pi/2 < x < \pi/2$ is [1]

a) $[-1, 1]$ b) $\{\cos 1, \cos 2, 1\}$
 c) $\{-1, 1, 0\}$ d) $\{\cos 1, -\cos 1, 1\}$

14. The range of $f(x) = x + \frac{1}{x}$ is [1]

a) $[2, \infty)$ b) $[-2, 2]$
 c) $(-\infty, -2]$ d) none of these

15. The range of the function $f(x) = \frac{x}{|x|}$ is [1]

a) $\{-1, 1\}$ b) $R - \{0\}$
 c) $R - \{-1, 1\}$ d) $\{-1, 2\}$

16. A relation ϕ from C to R is defined by $x \phi y \Leftrightarrow |x| = y$. Which one is correct? [1]

a) $(1 + i) \phi 2$ b) $3 \phi (-3)$
 c) $i \phi 1$ d) $(2 + 3i) \phi 13$

17. If $f(x) = \cos(\log_e x)$ Then $f\left(\frac{1}{x}\right)f\left(\frac{1}{y}\right) - \frac{1}{2} \left\{ f(xy) + f\left(\frac{x}{y}\right) \right\}$ is equal to [1]

a) $\log(\cos(x - y))$ b) 0
 c) 1 d) $\cos(x - y)$

18. The function $f : R \rightarrow R$ is defined by $f(x) = \sin^4 x - \sin^2 x + 1$, then $R(f) =$ [1]

a) $(3/4, 1)$ b) $[3/4, 1]$
 c) $[3/4, 1)$ d) $(3/4, 1]$

19. If set $A = \{1, 2\}$ and set $B = \{a, b\}$, then cartesian product of set and A set B is given by [1]

a) $A \times B = \{(a, 1), (b, 1), (2, a), (2, b)\}$ b) $A \times B = \{(a, 1), (1, b), (2, a), (2, b)\}$
 c) $A \times B = \{(1, a), (1, b), (2, a), (2, b)\}$ d) $A \times B = \{(a, 1), (b, 1), (2, a), (b, 2)\}$

20. Let T be the set of all triangles in the Euclidean plane, and let a relation R on T be defined as aRb if a is congruent to b $a, b \in T$. Then R is [1]

a) an equivalence relation b) neither reflexive nor symmetric

21. Let $n(A) = m$, and $n(B) = n$. Then the total number of non-empty relations that can be defined from A to B is [1]

a) m^n b) $m^n - 1$
 c) $n^m - 1$ d) $2^{mn} - 1$

22. Number of relations that can be defined on the set $A = \{a, b, c, d\}$ is [1]

a) 24 b) 4^4
 c) 16 d) 2^{16}

23. If $f(x) = |\cos x|$, then $f\left(\frac{3\pi}{4}\right)$ is [1]

a) 1 b) -1
 c) $\frac{-1}{\sqrt{2}}$ d) $\frac{1}{\sqrt{2}}$

24. If $f : R \rightarrow R$ is given by $f(x) = |x|$ and $A = \{x \in R : x < 0\}$, then $f^{-1}(A)$ equals [1]

a) ϕ b) A
 c) $A \cup \{0\}$ d) R

25. If $f(x) = \frac{x-1}{x+1}$ then $\left(f\frac{1}{f(x)}\right)$ equals [1]

a) 0 b) 1
 c) x d) $\frac{1}{x}$

26. The relation $R = \{(1, 1), (2, 2), (3, 3)\}$ on the set $\{1, 2, 3\}$ is [1]

a) an equivalence relation b) reflexive relation only
 c) symmetric relation only d) transitive relation only

27. The range of $f(a) = a^x$, where $a > 0$ is [1]

a) $(-\infty, 0]$ b) $(0, \infty)$
 c) $[0, \infty)$ d) $(-\infty, 0)$

28. Let $R = \{(x, y) : x^2 + y^2 = 1 \text{ and } x, y \in R\}$ be a relation in R. The relation R is [1]

a) symmetric b) anti-symmetric
 c) reflexive d) transitive

29. Let $f(x) = \cos^{-1}(3x - 1)$ find domain of $f(x)$ [1]

a) $\left[\frac{2}{3}, \frac{-2}{3}\right]$ b) $\left(0, \frac{2}{3}\right)$
 c) $\left[0, \frac{2}{3}\right]$ d) $\left[\frac{-2}{3}, \frac{2}{3}\right]$

30. If $A = \{(x, y) : x^2 + y^2 = 25\}$ and $B = \{(x, y) : x^2 + 9y^2 + y^2 = 144\}$, then $A \cap B$ contains [1]

a) three points b) two points
 c) four points d) one point

31. R is a relation from $\{11, 12, 13\}$ to $\{8, 10, 12\}$ defined by $y = x - 3$. Then, R^{-1} is [1]

a) $\{(10, 13), (12, 10)\}$ b) $\{(10, 13), (8, 11), (12, 10)\}$

c) $\{(11,8), (13,10)\}$ d) $\{(8,11), (10,13)\}$

32. If $x \neq 1$ and $f(x) = \frac{x+1}{x-1}$ is a real function, then $f(f(f(2)))$ is [1]

a) 4 b) 3
c) 2 d) 1

33. The domain and range of the real function f defined by $f(x) = \frac{4-x}{x-4}$ is given by [1]

a) Clearly, Domain = $\mathbb{R} - \{-4\}$, Range = $\{-1, 1\}$
b) Domain = $\mathbb{R} - \{1\}$, Range = \mathbb{R}
c) Domain = \mathbb{R} , Range = $\{-1, 1\}$
d) Domain = $\mathbb{R} - \{4\}$, Range = $\{-1\}$

34. If $f(x) = \log\left(\frac{1+x}{1-x}\right)$ and $g(x) = \frac{3x+x^3}{1+3x^2}$ Then $f(g)(x)$ is equal to [1]

a) $f(3x)$ b) $-f(x)$
c) $[f(x)]^3$ d) $3f(x)$

35. If $A = \{1, 2, 3\}$, $B = \{1, 4, 6, 9\}$ and R is a relation from A to B defined by x is greater than y . The range R is [1]

a) $\{6, 9\}$ b) $\{1\}$
c) $\{4, 6, 9\}$ d) $\{1, 4, 6, 9\}$

36. If $f(x) = x^3 - \frac{1}{x^3}$, then $f(x) + f(\frac{1}{x})$ is equal to [1]

a) $2x^3$ b) $2\frac{1}{x^3}$
c) 1 d) 0

37. Let A and B be finite sets containing m and n elements respectively. The number of relations that can be defined from A to B is [1]

a) 2^{m+n} b) 0
c) 2^{mn} d) mn

38. Let $A = \{x \in \mathbb{R} : x = 0, -4 \leq x \leq 4\}$ and $f : A \rightarrow \mathbb{R}$ be defined by $f(x) = \frac{|x|}{x}$ for $x \in A$ Then A is [1]

a) $|x : -4 \leq x \leq 0|$ b) $\{1\}$
c) $|x : 0 \leq x \leq 4|$ d) $\{1, -1\}$

39. If $f(x) = \sin[x^2] x + \sin[-\pi^2] x$. where x denotes the greatest integer less than or equal to x then [1]

a) $f(\pi/4) = -2$ b) $f(\pi/2) = 1$
c) $f(\pi) = 2$ d) $f(\pi/4) = -1$

40. In a city 20 percent of the population travels by car, 50 percent travels by bus and 10 percent travels by both car and bus. Then persons travelling by a car or bus is [1]

a) 60 percent b) 80 percent
c) 70 percent d) 40 percent

41. Let $A = \{a, b, c\}$, then the range of the relation $R = \{(a, b), (a, c), (b, c)\}$ defined on A is [1]

a) $\{b, c\}$ b) $\{c\}$
c) $\{a, b\}$ d) $\{a, b, c\}$

42. Consider the non – empty set consisting of children in a family and a relation R defined as aRb if a is brother of b. Then R is [1]

a) both symmetric and transitive
 b) transitive but not symmetric
 c) neither symmetric nor transitive
 d) symmetric but not transitive

43. The domain of the function f defined by $f(x) = \sqrt{4-x} + \frac{1}{\sqrt{x^2-1}}$ is equal to [1]

a) $(-\infty, -1) \cup [1, 4)$
 b) $(-\infty, -1] \cup (1, 4)$
 c) $(-\infty, -1) \cup (1, 4]$
 d) $(-\infty, -1) \cup [1, 4]$

44. If the set A contains 5 elements and the set B contains 6 elements, then the number of one – one and onto mappings from A to B is [1]

a) 100
 b) 720
 c) 120
 d) 0

45. Let R be the relation over the set of all straight lines in a plane such that $l_1 R l_2 \Leftrightarrow l_1 \perp l_2$. Then, R is [1]

a) symmetric and transitive but not Reflexive
 b) Reflexive and transitive but not symmetric
 c) Symmetric and reflexive but not transitive
 d) Symmetric but neither reflexive nor transitive.

46. Range of $f(x) = \frac{1}{1-2\cos x}$ is [1]

a) $(-\infty, -1] \cup \left[\frac{1}{3}, \infty\right)$
 b) $\left[-1, \frac{1}{3}\right]$
 c) $\left[\frac{1}{3}, 1\right]$
 d) $\left[-\frac{1}{3}, 1\right]$

47. Which one of the following is not a function? [1]

a) $\{(x, y) : x, y \in R, y = x^3\}$
 b) $\{(x, y) : x, y \in R, x^2 = y\}$
 c) $\{(x, y) : x, y \in R, y^2 = x\}$
 d) $\{(x, y) : x, y \in R, x = y^3\}$

48. The domain of the function $f(x) = \log_{3+x}(x^2 - 1)$ is [1]

a) $(-3, -2) \cup (-2, -1) \cup (1, \infty)$
 b) $[-3, -1) \cup [1, \infty)$
 c) $(-3, -1) \cup (1, \infty)$
 d) $[-3, -2) \cup (-2, -1) \cup [1, \infty)$

49. Let $A = \{1, 2, 3\}$ and $B = \{2, 4, 6, 8\}$. Consider the rule $f : A \rightarrow B$, defined $f(x) = 2x, \forall x \in A$, then range of f is given by set [1]

a) $\{6, 4, 8\}$
 b) $\{1, 2, 3\}$
 c) $\{2, 4, 6\}$
 d) $\{2, 4, 6, 8\}$

50. The relation R defined on the set $A = \{1, 2, 3, 4, 5\}$ by $R = \{(a, b) : |a^2 - b^2| < 16\}$, is given by [1]

a) $\{(2, 2), (3, 2), (4, 2), (2, 4)\}$
 b) $R = \{(1, 1), (2, 1), (3, 1), (4, 1), (2, 3), (2, 2), (3, 2), (4, 2), (2, 4), (3, 3), (5, 4), (3, 4)\}$
 c) none of these
 d) $\{(3, 3), (4, 3), (5, 4), (3, 4)\}$

51. Let the relation R be defined in N by aRb, if $2a + 3b = 30$. Then, $R = \underline{\hspace{2cm}}$. [1]

a) $\{(8, 3), (6, 6), (9, 4), (12, 2)\}$
 b) $\{(3, 8), (6, 5), (9, 4), (12, 2)\}$

c) $\{(3, 8), (6, 6), (9, 4), (12, 2)\}$ d) $\{(3, 8), (6, 6), (9, 4), (2, 12)\}$

52. Suppose $f : [2, 2] \rightarrow \mathbb{R}$ be defined by $f(x) = \begin{cases} -1 & \text{for } -2 \leq x \leq 0 \\ x - 1 & \text{for } 0 \leq x \leq 2 \end{cases}$, Then $\{x \in [-2, 2] : x \leq 0 \text{ and } f(x) = x\} =$ [1]

a) $\{-1\}$ b) \emptyset
 c) $\left\{-\frac{1}{2}\right\}$ d) $\{0\}$

53. If R is a relation on a finite set having n elements, then the number of relations on A is [1]

a) n^n b) 2^n
 c) 2^{n^2} d) n^2

54. Domain and range of $f(x) = \frac{|x-3|}{x-3}$ are respectively. [1]

a) $R, [-1, 1]$ b) R^-, R
 c) $R - \{3\}, \{1, -1\}$ d) R^+, R

55. A relation R on a non-empty set A is an equivalence relation if it is [1]

a) reflexive, symmetric and transitive b) reflexive
 c) reflexive, antisymmetric, transitive d) symmetric and transitive

56. If $f(x) = 64x^3 + \frac{1}{x^3}$ and α, β are the roots of $4x + \frac{1}{x} = 3$ Then [1]

a) $f(\alpha) = f(\beta) = -9$ b) $f(\alpha) = f(\beta) = 32$
 c) $f(\alpha) = f(\beta) = 63$ d) $f(\alpha) \neq f(\beta)$

57. Let R be the relation in the set N given by $R = \{(a, b) : a = b - 2, b > 6\}$. [1]

a) $(6, 8) \in R$ b) $(8, 7) \in R$
 c) $(2, 4) \in R$ d) $(3, 8) \in R$

58. If $A = [a, b], B = [c, d], C = [d, e]$ then $\{(a, c), (a, d), (a, e), (b, c), (b, d), (b, e)\}$ is equal to [1]

a) $A \cap (B \cup C)$ b) $A \times (B \cap C)$
 c) $A \times (B \cup C)$ d) $A \cup (B \cap C)$

59. If $f(x) = \cos(\log x)$ then $[f(x) f(y) - \frac{1}{2} f\left(\frac{x}{y}\right) + f(xy)]$ has the value [1]

a) $1/2$ b) -2
 c) None of these d) -1

60. Let $R = \{[a, a^3] : a \text{ is a prime number less than } 5\}$ be a relation. Find the range of R . [1]

a) $\{2, 27\}$ b) $\{2, 3\}$
 c) $\{3, 8\}$ d) $\{8, 27\}$

61. let $f(x) = e^{\sqrt{x^2-1}} \log(x-1)$ Then, $\text{dom } f(x) =$ [1]

a) $(1, \infty)$ b) $(-\infty, -1] \cup (1, \infty)$
 c) $(-\infty, 1]$ d) $[-1, \infty)$

62. The domain of function $f : \mathbb{R} \rightarrow \mathbb{R}$ defined by $f(x) = \sqrt{x^2 - 3x + 2}$ is [1]

a) $[2, \infty]$ b) $(-\infty, 1] \cup [2, \infty)$
 c) $(-\infty, 1]$ d) $[1, 2]$

63. The domain and range of real function f defined by $f(x) = \sqrt{x-1}$ is given by [1]

a) Domain = $[\infty, \infty)$, Range = $[0, \infty)$ b) Domain = $[1, \infty)$, Range = (∞, ∞)
 c) Domain = $[1, \infty)$, Range = $[0, \infty)$ d) Domain = $(1, \infty)$, Range = $(0, \infty)$

64. If R is a relation from a non – empty set A to a non – empty set B , then [1]

a) $R \subseteq A \times B$ b) $R = A \cap B$
 c) $R = A \cup B$ d) $R = A \times B$

65. If $f(x) = \cos(\log x)$, then value of $f(x) f(4) - \frac{1}{2} \{ f(\frac{x}{4}) + f(4x) \}$ is [1]

a) 0 b) ± 1
 c) -1 d) 1

66. Two functions $f : R \rightarrow R$ and $g : R \rightarrow R$ are defined as follows : $f(x) = \begin{cases} 0(x \text{ Rational}) \\ 1(x \text{ Irrational}) \end{cases}$, $g(x) = \begin{cases} -1(x \text{ Rational}) \\ 0(x \text{ Irrational}) \end{cases}$ then $(gof)(e) + (fog)(\pi) =$ [1]

a) 0 b) 1
 c) 2 d) -1

67. Let $R = \{(a, a), (b, b), (c, c), (a, b)\}$ be a relation on set $A = \{a, b, c\}$. Then, R is [1]

a) transitive b) anti – symmetric
 c) symmetric d) reflexive

68. The range of the function $f(x) = |x - 1|$ is [1]

a) R b) $(-\infty, 0)$
 c) $(0, \infty)$ d) $[0, \infty)$

69. The range of the function $f(x) = \frac{x^2 - x}{x^2 + 2x}$ is [1]

a) $R - \{-1/2, 1\}$ b) $R - \{1\}$
 c) R d) $R - \{1/2, -1\}$

70. Let R be the relation on N defined as by $x + 2y = 8$. The domain of R is [1]

a) $\{2, 4, 6, 8\}$ b) $\{2, 4, 8\}$
 c) $\{1, 2, 3, 4\}$ d) $\{2, 4, 6\}$

71. Let S be the set of all real numbers. Then the relation $R = \{(a, b) : 1 + ab > 0\}$ on S is [1]

a) reflexive symmetric and transitive. b) reflexive and symmetric but not transitive.
 c) reflexive and transitive but not symmetric. d) symmetric and transitive but not reflexive.

72. Let $f(x) = x^3$. Then, dom (f) and range (f) are respectively [1]

a) R and R^+ b) R^+ and R
 c) R^+ and R^+ d) R and R

73. Which of the following are functions?

[1]

- a) $\{(x, y) : x^2 - y^2 = 1, x, y \in R\}$
- b) $\{(x, y) : y^2 = x, x, y \in R\}$
- c) $\{(x, y) : x^2 + y^2 = 1, x, y \in R\}$
- d) $\{(x, y) : y = |x|, x, y \in R\}$

74. If $A = \{(x, y) : x^2 + y^2 = 5\}$ and $B = \{(x, y) : 2x = 5y\}$, then $A \cap B$ contains

[1]

- a) two points
- b) one-point
- c) infinite points
- d) no point

75. Let $f(x) = \frac{\sin^{-1} x}{x}$ Then, $\text{dom}(f) = ?$

[1]

- a) $[-1, 1] - \{0\}$
- b) $[1, -1]$
- c) $[-1, 1]$
- d) $(-1, 1)$