

CBSE

SETS WS

Class 11 - Mathematics

9. Let $A = \{a, b, c\}$, $B = \{a, b\}$, $C = \{a, b, d\}$, $D = \{c, d\}$ and $E = \{d\}$. Then which of the following statement is not correct? [1]

a) $D \supseteq E$ b) $C - B = E$
 c) $B \cup E = C$ d) $C - D = E$

10. If sets A and B are defined as $A = \{(x, y) | y = \frac{1}{x}, 0 \neq x \in \mathbf{R}\}$, $B = \{(x, y) | y = -x, x \in \mathbf{R}\}$, then [1]

a) $A \cap B = A$ b) $A \cup B = A$
 c) $A \cap B = \emptyset$ d) $A \cap B = B$

11. If $A \cup B = B$ then [1]

a) $B \subset A$ b) $A \subseteq B$
 c) $B = \emptyset$ d) $A \neq \emptyset$

12. If $A \subset B$, then [1]

a) $A^c \subset B^c$ b) $B^c \not\subset A^c$
 c) $A^c = B^c$ d) $B^c \subset A^c$

13. The set $A = \{x : x \text{ is a positive prime number less than } 10\}$ in the tabular form is [1]

a) $\{2, 3, 5, 7\}$ b) $\{1, 2, 3, 5, 7\}$
 c) $\{3, 5, 7\}$ d) $\{1, 3, 5, 7, 9\}$

14. If a set A has n elements then the total number of subsets of A is [1]

a) $2n$ b) n
 c) 2^n d) n^2

15. If $A = \{1, 3, 5, B\}$ and $B = \{2, 4\}$, then [1]

a) $\{4\} \subset A$ b) None of these
 c) $B \subset A$ d) $4 \in A$

16. The number of subsets of a set containing n elements is [1]

a) 2^{n-1} b) $2^n - 2$
 c) 2^n d) n

17. Let $A = \{x : x \notin \mathbf{R}, x \geq 4\}$ and $B = \{x : x \notin \mathbf{R}, x < 5\}$ then $A \cap B$ is [1]

a) $\{5, 4\}$ b) $\{4, 5\}$
 c) $\{4\}$ d) $\{x : x \in \mathbf{R}, 4 \leq x < 5\}$

18. Let A and B be two non- empty subsets of a set X such that A is not a subset of B , then [1]

a) A and the complement of B are always non-disjoint b) A is always a subset of B
 c) A and B are always disjoint d) B is always a subset of A

19. If $A = \{(x, y) : x^2 + y^2 = 25\}$ and $B = \{(x, y) : x^2 + 9y^2 = 144\}$ then $A \cap B$ contains [1]

20. The number of proper subsets of the set $\{1, 2, 3\}$ is : [1]

a) 6 b) 7
c) 8 d) 5

21. If $A = \{0, 1, 5, 4, 7\}$. Then the total number subsets of A are [1]

a) 20 b) 32
c) 64 d) 40

22. If $A \cap B = B$ then [1]

a) $A = \emptyset$ b) $B = \emptyset$
c) $B \neq \emptyset$ d) $B \subseteq A$

23. Let $A = \{x : x \in \mathbb{R}, x > 4\}$ and $B = \{x \in \mathbb{R} : x < 5\}$. Then, $A \cap B =$ [1]

a) $[4, 5)$ b) $[4, 5]$
c) $(4, 5]$ d) $(4, 5)$

24. If A and B are two sets, then $A \cap (A \cup B)$ equals [1]

a) B b) \emptyset
c) A d) $A \cap B$

25. If A, B, C be any three sets such that $A \cup B = A \cup C$ and $A \cap B = A \cap C$, then [1]

a) $B = C$ b) $A = B = C$
c) $A = C$ d) $A = B$

26. Let R be set of points inside a rectangle of sides a and b ($a, b > 1$) with two sides along the positive direction of x-axis and y-axis. Then [1]

a) $R = \{(x, y) : 0 \leq x \leq a, 0 \leq y \leq b\}$ b) $R = \{(x, y) : 0 \leq x < a, 0 \leq y \leq b\}$
c) $R = \{(x, y) : 0 < x < a, 0 < y < b\}$ d) $R = \{(x, y) : 0 \leq x \leq a, 0 < y < b\}$

27. Which of the following is a null set? [1]

a) $C = \emptyset$ b) $B = \{x : x + 3 = 3\}$
c) $D = \{0\}$ d) $A = \{x : x > 1 \text{ and } x < 3\}$

28. In a set builder method the null set is represented by [1]

a) $\{ x : x = x \}$ b) \emptyset
c) $\{ \}$ d) $(x : x \neq x)$.

29. Suppose A_1, A_2, \dots, A_{30} are thirty sets each having 5 elements and B_1, B_2, \dots, B_n are n sets each having 3 elements. Let $\bigcup_{i=1}^{30} A_i = \bigcup_{j=1}^n B_j = S$ and each element of S belongs to exactly 10 of A_i 's and exactly 9 of B_i 's. Then n is equal to. [1]

a) 3 b) 15

30. If $A = \{x : x \neq x\}$ represents [1]

- a) $\{1\}$
- b) $\{ \}$
- c) $\{x\}$
- d) $\{0\}$

31. Two finite sets have m and n elements. The total number of subsets of the first set is 56 more than the total number of subsets of the second set. The values of m and n are [1]

- a) 7, 4
- b) 6, 4
- c) 3, 3
- d) 6, 3

32. Each set X_r contains 5 elements and each set Y_r contains 2 elements and $\bigcup_{r=1}^{20} x_r = S = \bigcup_{r=1}^n Y_r$. If each element of S belong to exactly 10 of the X_r 's and to exactly 4 of the Y_r 's, then n is [1]

- a) 10
- b) 20
- c) 50
- d) 100

33. Two finite sets have m and n elements respectively. The total number of subsets of first set is 56 more than the total number of subsets of the second set. The values of m and n respectively are. [1]

- a) 5, 1
- b) 7, 6
- c) 8, 7
- d) 6, 3

34. The number of subsets (Improper) of a set containing n elements is [1]

- a) 2^n
- b) $2^n - 1$
- c) $2^n - 2$
- d) n

35. For any two sets A and B , $A \cup B = A$ if [1]

- a) $A = B$
- b) $B \in A$
- c) $A \neq B$
- d) $B \subseteq A$

36. If $Q = \{x : x = \frac{1}{y}, \text{ where } y \in \mathbb{N}\}$, then [1]

- a) $1 \in Q$
- b) $\frac{1}{2} \notin Q$
- c) $2 \in Q$
- d) $0 \in Q$

37. The number of non-empty subsets of the set $\{1, 2, 3, 4\}$ is: [1]

- a) 14
- b) 16
- c) 17
- d) 15

38. The set of all prime numbers is [1]

- a) an infinite set
- b) a singleton set
- c) a multi set
- d) a finite set

39. Let $S = \{x \mid x \text{ is a positive multiple of 3 less than } 100\}$ [1]

$P = \{x \mid x \text{ is a prime number less than } 20\}$. Then $n(S) + n(P)$ is

- a) 41
- b) 30

50. Consider the following relations: 1. $A - B = A - (A \cap B)$ 2. $A = (A \cap B) \cup (A - B)$. 3. $A - (B \cup C) = (A - B) \cup (A - C)$. Which of these is/are correct? [1]

- a) 2 only
- b) 1 and 3
- c) 1 and 2
- d) 2 and 3